La Presse Thermale et Climatique

XXXe CONGRÈS INTERNATIONAL D'HYDROLOGIE ET DE CLIMATOLOGIE MÉDICALES

INTERNATIONAL SOCIETY OF MEDICAL HYDROLOGY AND CLIMATOLOGY

Vittel, Contrexéville, Nancy
France
3 - 8 novembre 1986

Organe officiel de la Société Française d'Hydrologie et de Climatologie Médicales
La formidable action sur le corps de l'eau de Contrexéville, eau de diurèse, en fait la source naturelle de la minceur. La minceur, source de santé, beauté, vitalité et ...harmonie. Pionnier de la minceur, Contrexéville crée il y a 10 ans le Forfait Ligne. 10 années d'un succès croissant, preuve de son efficacité. Le Forfait Ligne : 10 jours pour mincir et apprendre à rester mince.

10 JOURS DE MINCEUR PERSONNALISÉE

A chacun, chacune, son Forfait Ligne ! Dès votre arrivée à Contrexéville, notre médecin établit avec vous votre programme minceur personnalisé : bains, massages, soins, exercices physiques à la carte et diététique adaptée. Et bien sûr, l'eau de Contrexéville, fraîche et jaillissante, riche de propriétés actives, l'eau de la minceur par excellence.

Alors pourquoi attendre : dès maintenant faites-vous le plaisir d'un nouveau départ minceur dans la capitale de la minceur.

10 JOURS POUR APPRENDRE À SE CONNAÎTRE

La vivifiante sérénité de la forêt vosgienne, une station thermale qui bouge et offre gaité, distractions et activités au gré de chacun, les premiers résultats ne se font pas attendre : envoûtes les premiers kilos, retrouvés la silhouette et le moral, pendant qu'en même temps vous apprenez les gestes de votre minceur, les exercices qui vous sont précieux, l'alimentation qui vous réussit... et Contrex !

Forfait Ligne B.P. 42 88140 CONTREXÉVILLE. Tél. : (16) 76.08.08.08
La Presse Thermale et Climatique

ORGANE DE LA SOCIÉTÉ FRANÇAISE D’HYDROLOGIE
ET DE CLIMATOLOGIE MÉDICALE

Ancienne GAZETTE DES EAUX
Fondateur : Victor GARDETTE †

COMITÉ DE PATRONAGE

COMITÉ DE RÉDACTION

Rédacteur en chef honoraire : Jean COTTET, membre de l’Académie de Médecine.

Rédacteur en chef : J. FRANÇON, Secrétaire de Rédaction : R. JEAN.

COMITÉ MEDICAL DES STATIONS THERMALES

Docteurs A. DELABROISE, G. EBRARD, C.Y. GERBAULET, J. LACARIN.

Les opinions exprimées dans les articles ou reproduites dans les analyses n’engagent que les auteurs.

Éditeur : EXPANSION SCIENTIFIQUE FRANÇAISE
15, rue Saint-Benoit - 75278 PARIS CEDEX 08
Tél. (1) 45.48.42.60 - C.C.P. 370-70 Paris

TARIFS DE L’ABONNEMENT
4 numéros par an
FRANCE : 230 F; Étudiants, CES : 120 F
ETRANGER : 285 F; Étudiants, CES : 175 F
Prix de ce numéro : 200 F
En complément des admirables progrès réalisés par la médecine depuis 50 ans, on assiste à un regain d'intérêt pour les traitements qui mettent en œuvre des moyens naturels.

La cryothérapie ou traitement par les eaux minérales, est un moyen thérapeutique bénéficiant à la fois d'une longue expérience et de bases scientifiques solides.

Notre pays est particulièrement riche en sources minérales, mais ces eaux sont fort diverses. Leurs indications, leur prescription et leurs modes d'administration ont beaucoup évolué. Une mise au point s'imposait.

Le Dr René Flurin et le Dr Jean de La Tour sont parfaitement qualifiés pour rédiger cet ouvrage. Le premier, ancien interne et chef de clinique de Paris, exerce la médecine thermale à Cauterets, le second exerce la médecine thermale à Vichy et participe à la recherche médicale dans une unité INSERM à la Faculté Xavier-Bichat (Paris).

Ce livre, est à la fois :
- un guide de prescription des cures pour les médecins,
- une initiation à la médecine thermale pour les étudiants en médecine,
- un texte de référence pour tous ceux qui participent à la vie d'une station thermale.

Il aidera aussi les curistes à mieux comprendre le rôle et le mode d'action des cures et à tirer le meilleur bénéfice de leur séjour en station thermale.

Mieux comprendre
les cures thermales

par les Docteurs
R. FLURIN
et
J. DE LA TOUR

BULLETIN DE COMMANDE

Nom ___________________________
Adresse ___________________________

vous commandes... ex. de "Mieux comprendre les cures thermales" au prix de 57 F Franco domicile

règlement joint : ☐ chèque bancaire ☐ chèque postal CCP 370.70 Z

Date : ___________________________

Signature : ___________________________

à retourner à : L'Expansion Scientifique Française
Service Diffusion
15, rue Saint-Benoît
75278 Paris Cedex 06

ISBN 2-7046-1199-8
La Presse Thermale et Climatique

SOMMAIRE

INTERNATIONAL SOCIETY OF MEDICAL HYDROLOGY AND CLIMATOLOGY
XXX° CONGRES INTERNATIONAL D’HYDROLOGIE
ET DE CLIMATOLOGIE MEDICALES

Actes publiés sous la direction de M. Boulangé et J.F. Collin
Faculté de Médecine de Nancy
Vittel, Contrexéville, Nancy
France
3-8 novembre 1986

 Allocation de Monsieur Jean Arthuis, Secrétaire d’Etat 209

Session 1
Mécanismes et effets de la cure de diurèse

Une nouvelle indication de la cure thermale de Vittel. L’expulsion de grêle ou de calculs restants après lithotripsie, par J. Thomas .. 213

Intérêt du dosage APO A1 et APOB en début de cure, fin de cure et un mois après une cure thermale à Capvern-les-Bains, par M. Jaitel, C. Contant, P. Duchêne-Marulicz, J. Paccalin .. 215

Untersuchungen über den Einfluss vierwöchiger Trinkkuren mit Natrium-haltigen Heilwässern auf den Blutdruck hyper-, hypo- und normotoner Probanden, par G. Hildebrandt, M. Beudt, C. Gutenbrunner .. 218

Untersuchungen über die adaptive Wirkung von Trinkkuren, par C. Gutenbrunner .. 220

New observations on «bath diuresis». The atrial natriuretic factor (ANF) during water immersion, par W. Schnizer, H. Knorr, P. Schöps, A.L. Gerbes, R.M. Arendt, E. Stangi, N. Seichert .. 221

Lithiase rénale et métabolisme phospho-calcique. Place du thermalisme, par C. Petit .. 224

Mise à disposition de l’organisme du calcium apporté par des eaux du bassin de Vittel. Etude chez la souris, par S. Ducos-Fonfrede, F. Clanet .. 226

Métabolisme phosphocalcique et cure thermale à Bouronne-les-Bains, par M. Picard, B. Allary .. 230

Spunti emergenti da un’esperienza su oltre 10.000 prove di diuresi da carico idrico nel ratto albino, par P.C. Federici, C. Marchesi, A. Pasquali .. 231
Présentation de posters
Lithiases rénales et cure de diurèse : modifications des mécanismes d'acidification de l'urine, par N. de Talancé, B. Sioly, M. Boulangé .. 232
Lithiases rénales et cure de diurèse. Action sur le métabolisme phospho-calcique et les hormones régulantes, par N. de Talancé, J. Thomas, C. Burlet, M. Boulangé 233

Session 2
La crénothérapie de la spondylarthrite ankylosante

Table ronde
L'histoire de la spondylarthrite ankylosante et de ses relations avec la médecine thermale. Résumé, par V. Ott ... 236
Aspects nosologiques de la spondylarthrite ankylosante. Résumé, par A. Gaucher 237
Spondylarthrite ankylosante d'origine traumatique, par J. Gougeon 237
Rééducation de la spondylarthrite ankylosante, par L. Simon, C. Hérisson, M. Enjalbert 240
Crénothérapie de la spondylarthrite ankylosante, par R. Louis 245

Présentation de poster
Présentation de l'association contre la spondylarthrite ankylosante et ses conséquences, par G. Vancon, J. Marion, G. Faure, P. Netter, J. Pourel, A. Gaucher 247

Session 3
Rhumatologie et immunologie

210 cas de spondylarthrite ankylosante, suivis de 2 à 30 ans en milieu thermal, par F. Forestier, C. Ben Larache, A. Monroe .. 248
Funktionsäderungen bei Patienten mit Spondylitis ankylosans während Kurheilverfahren (Radon-Balneotherapie) in Badgastein, par M. Herold, R. Günther .. 254
La spondilite anchilosante, par C. Arena .. 259
Le rôle de la balnéothérapie complexe dans le traitement de la polyarthrite chronique évolutive, par J. Simek .. 261
Intérêt de la crénothérapie dans les lombalgies après chirurgie de hernie discale, par B. Allary, M. Picard ... 275
Pool therapy for paralytic patient, par J.D. Henriksen ... 277
SOMMAIRE (suite)

Session 4
Effets physiologiques de l’immersion et de la balnéation

Table ronde
Sur l’élévation immédiate de la pression artérielle générale provoquée par l’immersion verticale, par J. Lecomte, D. Lagneaux ... 279
Rôle des hormones réglant la volémie (système rénine-angiotensine-aldostérone, ADH et ANF) dans l’immersion, par C. Gharib, G. Gauquelin, A. Guell ... 281
Hemorheological, metabolic and hormonal changes in man undergoing therapeutic water immersion, par V. Digiesi, S. Forni, F. Masi, G. Cerchiai, L. Mannini, E. Baldi, B. Dorigo, P. Giannotti .. 284
Régulation thermique lors de l’immersion : concepts de base, par Y. Houdas .. 288
Emodinamica periferica nella balneoterapia e nell’antroterapia termale, par P.C. Federici 290

Session 5
Le thermalisme à travers le monde

Quelques aspects des cures thermales au Portugal : pathologie et techniques, par A.V. Castelo-Branco ... 292
L’avenir du thermalisme en Belgique, par P. de Marchin ... 296
Kurorte als integraler Teil des allgemeinen Gesundheitsschutz-systems im Lichte 40 « jähriger polnischer Erfahrungen », par G. Straburzyński .. 297
Klimatherapie, Talassotherapie, Balneotherapie, Peloidotherapie und ihre anwendungs möglichkeiten in der Türkei, par N. Usman-Ozer, H. Gurdal, E. Basak, S. Bahadır, M. Çimsit, Z. Karagülle .. 304

Session 6
Expérimentation en médecine thermale

L’influence de la crénothérapie à Balaruc sur l’axe hypophyso-surrénalien, par R. Ayats, A. Or- setti, J.L. Jacquemin .. 309
Chronobiologie und Balneotherapie, par R. Günther, M. Herold .. 312
Influence de l’eau arsenicale de la Bourboule sur le potentiel enzymatique de défense antioxy- dante chez le rat en normoxie et en hypoxie chronique, par C. Blondeau, A. Magnin, G. Toubin, M.T. Tran, P. Magnin .. 319
De l’incidence de l’eau thermale de la Bourboule sur le métabolisme érythrocytaire en hypoxie chronique normobare chez le rat, par G. Toubin, A. Magnin, C. Blondeau, M.T. Tran, M. Mercet, P. Magnin .. 321
Stratégie de recherche et de développement en station thermale. Exemple : la station de Bar- botan-les-Thermes (Gers), par C. Garreau, B. Garreau-Gomez .. 322
L'éducation sanitaire des curistes en station thermale, par J. Louis, R. Louis 325
SOMMAIRE (suite)

Session 7
Médecine thermale et sport

<table>
<thead>
<tr>
<th>Introduction, par A. Monroche</th>
<th>328</th>
</tr>
</thead>
<tbody>
<tr>
<td>Médecine thermale et sport, par H. Monod</td>
<td>329</td>
</tr>
<tr>
<td>Les stations thermales au service de l'éducation et des activités sportives des biens-portants, par F. Besançon</td>
<td>330</td>
</tr>
</tbody>
</table>

Session 8
Techniques oto-rhino-laryngologiques et crénothérapie stomatologique

Rapports

| Les moyens de défense de la muqueuse naso-sinusienne, par J. Tisserant, R. Jankowski | 333 |
| Système nerveux végétatif et muqueuse pituitaire. aspects physiologiques et physiopathologiques, par P. Perrin, P. Gazel | 336 |

Communications

Résultats précoces des insufflations tubaires après une cure thermale à Gréoux-les-Bains, par D. Esteve, T. de Baillencourt	344
La mesure des caractéristiques dimensionnelles des aérosols d'eau thermale, par J.C. Guichard, P. Drutel	345
La pharmacochimie des eaux sulfurées en crénothérapie ORL et stomatologie, par F. Clanet, S. Ducos-Fonfrede	350
La phycithérapie : une nouvelle thérapeutique des parodontopathies, par J.P. Petit	358

Session 9
Médecine thermale et clinique

Cure thermale de Vals-les-Bains et tolérance glucidique, par A. Alland, J.L. Charbonnier, C. Rodes, D. Lechevallier, J.Y. Ulrich, G. Loupy, A. Rambaud	361
Méthodes récentes d'investigation des effets du traitement thermal de Royat. Résumé, par R. Fabry, R. Delahaye, G. Schaff	366
Beeinflußung der essentiellen arteriellen Hypertonie durch nicht-medikamentöse Maßnahmen während einer Kur mit Kohlensäurebadern, par B. Hartmann, U. Pohl, D. Wohltmann, E. Bassenge	367
Etude radiographique de la remontée colique du goutte-à-goutte intestinal de Châtelguyon. Intérêt diagnostique et thérapeutique, par J.B. Chareyras, M. Gualino	370
Kuberhaußung der Gastritis chronica erosiva. Engeschis Verlängerter Observationen, par L. Hryniewski, C. Straburzinski, K. Linke	372

Présentation de poster

| Traitement à Royat des plaies d'origine vasculaire : Essai d'interprétation des résultats. Résumé, par P.B. Avril, J.J. Dubost, J.L. Merle, J. Body | 374 |
SOMMAIRE (suite)

Session 10
L'utilisation de l'informatique en médecine thermale

Principes de méthodologie de l'essai thérapeutique en médecine thermale: le dossier médical informatisé et l'analyse statistique des résultats, par C. Delboy, R. Bartolin 375
Dossier médical dermatologique informatisé, par M. Oddoze, R. Bartolin, C. Delboy 379
Le dossier médical informatisé de pneumologie en pratique thermale : méthodologie, par D. Nicolas, R. Bartolin, C. Delboy .. 383
Le dossier médical informatisé des artériopathies chroniques en pratique thermale : méthodologie, par C. Ambrosi, R. Bartolin, C. Delboy .. 384
Le dossier médical informatisé de crénothérapie : méthodologie, par C. Garreau, R. Bartolin, C. Delboy ... 385

Démonstrations

Base de données bibliographiques sur le thermalisme. Résumé, par C. Guenot, J.F. Collin, M. Boulangé ... 387
Informatisation de la méthode de représentation graphique de composition chimique des eaux spécialement d'intérêt médical. Résumé, par B. Ninard, E. Ninard 388
Une aide informatique dans le thermalisme. Résumé, par le Ministère des Affaires sociales et de l'Emploi ... 388
Le logiciel macure, par P. Frezet .. 389

Session 11
Bases expérimentales de la crénothérapie

Essai de classification technique des boues thermales, par R. Savarit .. 390
Contributi sperimentali sul decremento termico in peloidi e sabbie durante l'applicazione terapeutica, par P.C. Federici, C. Marchesi, A. Pasqualis .. 392
Methodik und Wirkungsmechanismen der vaginalen Moorbelei-Behandlung, par R. Kovařik 393

Conférence

Experimentelle Grundlagen der Balneotherapie entzündlicher Prozesse, par K.L. Schmidt 396

Présentation de poster

Mise au point d'une méthode de mesure des transferts percutanés « in vitro » appliquée à la balnéothérapie et à la peliothérapie. Résumé, par F. Davrainville, J.F. Collin, C. Burlet, M. Boulangé .. 398
Capacités thermiques des peloides minéraux. Résumé, par T. Ferrand, B. Guillet 399

Session 12
La ressource thermale
Le patrimoine hydrogéologique

Réflexions sur la protection de la ressource thermale, par B. Blavoux .. 400
La connaissance et la protection d'un système thermominéral, par M. Lopoukhine 405
Mise au point d'une méthode de détection de l'arsenic in situ, par C. Van Den Berghe, R. Lau- gier, J.F. Muller, C. Burlet, A. Burlet .. 406
SOMMAIRE (suite et fin)

Présentation de film
Chaudes-Aigues, par J.P. Gibert, R. Brousse .. 408

La surveillance des installations
Hygiène et surveillance des installations thermales. Résumé, par P. Hartemann 408
Hygiène des piscines de mobilisation dans les stations thermales, par F. Besançon 409
Contrôles bactériologiques des eaux de piscines thermales, par A. Rambaud, D. Pépin, J. Alame, C. Gravina .. 410
Techniques d’étude de la contamination et de la décontamination des surfaces dans une installation thermale, par J.L. Paquin, X. Bonnefoy ... 414
Hygiène de l’atmosphère dans les établissements thermaux, par D. Pépin, A. Rambaud, C. Chades .. 416
Les matériaux utilisés dans le transport des eaux minérales, par G. Popoff 418

Session 13
Climatologie et thalassothérapie

La bioclimatologie humaine : situation actuelle et perspectives, par E. Choisnel 421

Table ronde
Cure climatique d’altitude et asthme bronchique. Critères objectifs d’appréciation. Résumé, par H. Razzouk .. 424
La climatotherapie de l’asthme, par B. Primault .. 425
Influence de l’entraînement à l’effort en atmosphère chaude et saturée de vapeur d’eau chez l’asthmaticque adulte, par Y. Lanusse, J. Hounau, P. Dieudonné, J.M. Querbes, E. Klahr, R. Menier .. 426
Corticoid hormones and climatherapy in mild high-mountain environment in patients with bronchial asthma, par J. Zvonar ... 428
Particularités du thermalisme pédiatrique, rôle du Centre d’Etude sur la Thérapeutique, le Thermalisme et l’Enfant, par J. Vialatte .. 431

Présentation de film
Rééducation fonctionnelle en milieu marin, par B.F. Badelon, P. Moisson, F. Chauvel, P. Laurent 432

Communications
La thérapie climatique aujourd’hui. Résumé, par A. Schuh ... 436
Aspects psychologiques et psychothérapeutiques de l’hydrothérapie, par J.P. Kahn 436

Séance de clôture
Métabolisme cellulaire et crénothérapie, par P. Magnin .. 439
Allocution de Monsieur André Rossinot, Ministre, Maire de Nancy 446
Allocution de Monsieur Adrien Zeller, Secrétaire d’Etat .. 447
Séance d'ouverture

Allocution de Monsieur Jean Arthus
Secrétaire d'Etat auprès du Ministre des Affaires sociales et de l'Emploi

Mesdames, Messieurs,

Je veux d'abord vous remercier pour votre aimable accueil et vous dire mon plaisir et ma satisfaction d'être parmi vous à l'occasion de votre congrès international d'Hydrologie. Je suis aussi porteur d'un message que je vous livre sans attendre.

M. Philippe Seguin, ministre des Affaires Sociales et de l'Emploi ressentait une joie toute particulière à l'idée d'être avec vous aujourd'hui, et ce d'autant plus que ce 30e Congrès a lieu pour une large part à Vittel et Contrexéville, dans ce département des Vosges qui lui est cher.

Malheureusement, retenu par les obligations impératives de sa charge, il n'a pu répondre personnellement à votre invitation et m'a chargé de le représenter et de vous faire part de ses excuses.

Je me réjouis d'être son interprète auprès de vous aujourd'hui.

Permettez-moi, tout d'abord, de saluer toutes les personnalités du monde médical, scientifique, économique ou politique dont la présence ici témoigne, s'il en était besoin, de l'intérêt qu'elles portent au thermalisme, en même temps qu'elle atteste de la vitalité de ce secteur important dans la vie économique et sociale de notre pays.

Je tiens tout particulièrement, au nom du Gouvernement, à exprimer mes remerciements aux personnalités étrangères venues de nombreux pays qui ont bien voulu apporter leur contribution technique et scientifique au déroulement de ces journées.

Qu'il me soit permis enfin d'exprimer notre gratitude à Monsieur le Professeur Boulangé et à tous ceux qui ont eu la responsabilité et la lourde charge d'assurer l'organisation de cette manifestation, qui honore la France.

Votre Congrès, qui succède à celui tenu en 1982 à Ponta del Gada, aux Açores, s'inscrit dans le cadre du développement des échanges multiples, au-delà des frontières, que la Société Internationale et la Société française d'Hydrologie et de climatologie médicales se sont donnés pour mission de promouvoir.

Avant d'examiner la place du thermalisme dans notre système de santé, je souhaiterais au préalable rappeler brièvement quelques dates qui ont marqué son histoire.

Les propriétés thérapeutiques des eaux thermales sont connues depuis l'Antiquité, mais il faudra attendre un arrêt du Conseil du Roi du 7 mai 1781 pour que les Pouvoirs Publics se penchent sur la réglementation des eaux minérales. Cet arrêt prescrivait à tout propriétaire de découvrir une source d'eau minérale « d'en instruire la Société royale de médecine, pour qu'elle en fasse faire l'examen et que la distribution en soit permise ou prohibée ».

Mais c'est surtout au XIXe siècle, sous le Second Empire et la IIIe République que l'engouement pour les « eaux » a connu son âge d'or, ce qui a conduit le législateur et les Pouvoirs Publics à intervenir tant en matière de police que de santé publique.

Toutefois, à cette mode succéda un demi-siècle plus tard une crise durant laquelle tous les responsables, médecins et auxiliaires médicaux, ainsi que les élus locaux se mirent à douter de l'efficacité des cures thermales. C'est ainsi qu'en 1970, le Doyen Cuvelier, Responsable d'une étude sur le thermalisme français, pouvait affirmer que la situation n'était pas satisfaisante, et parlait même d'un « État de stagnation ».

Huit ans plus tard, le Professeur Debray allait jusqu'à qualifier de « Maladie de consommation » le mal dont souffrait le thermalisme français. Les données ont heureusement évolué depuis lors.

Aujourd'hui, avec près d'un millier de sources d'eaux minérales, une centaine de stations, notre pays bénéficie d'un patrimoine thermal d'une grande richesse. Son poids

Presse thermale et climatique, 1988, 125, n° 5.
économique est considérable : 3 milliards de chiffre d'affaire, 145 établissements thermaux accueillant chaque année plus de 600 000 curistes et employant de façon permanente ou saisonnière plus de 60 000 personnes. Ces chiffres montrent, à l'évidence, que le thermalisme français connaît un nouvel essor et renoue ainsi avec l'âge d'or qui lui fut le sien. Mais ce renouveau s'inscrit dans le contexte scientifique et culturel qui est aujourd'hui le nôtre.

Aussi, à l'heure où la médecine, grâce à l'essor des technologies, s'appuie sur les thérapeutiques les plus sophistiquées, le thermalisme, loin d'être dépassé, peut et doit occuper la place qui lui revient.

Grâce à la crénothérapie, en effet, deux préoccupations essentielles d'une politique moderne de la santé trouvent leur réponse. En premier lieu, elle apporte une complémentarité aux thérapeutiques modernes dans le traitement des affections somatiques et ce alors que les progrès thérapeutiques spectaculaires réalisés au cours des 30 dernières années ont davantage transformé la médecine qu'elle ne l'avait été durant les siècles passés.

Son rôle est ainsi très important dans la prévention et dans le traitement des séquelles ou des récidives d'affections invalidantes, telles que les affections rénales, rhumatismales et cardio-vasculaires ; or, la population de notre pays vieillit et, de fait d'une espérance de vie plus longue, nombreux sont ceux qui risquent d'être frappés de handicap. Pour eux, en particulier, l'indication d'une cure thermale apparaît pleinement justifiée.

Je sais d'ailleurs que ces questions feront l'objet, au cours de votre Congrès, de plusieurs communications de la part d'éménants spécialistes français et étrangers.

En second lieu, la crénothérapie ouvre le sourire de nouvelles perspectives et un nouvel essor dans la thérapie des maladies de notre civilisation, maladies de surcharge ou de stress, conséquences d'un environnement toujours plus agressif pour l'homme.

A ce titre, elle permet d'apporter une réponse pleinement adaptée aux besoins actuels de nos contemporains soumis à des tensions diverses qui souhaitent mieux gérer eux-mêmes ce bien précieux que représente leur propre santé.

Ainsi, les vertus tant préventives que curatives du thermalisme justifient pleinement, du point de vue médical, qu'il trouve une place toute naturelle dans notre système de soins et que son développement soit encouragé.

Il est manifeste, en effet, que la prévention et la recherche d'un meilleur équilibre par l'apprentissage des règles d'hygiène doivent permettre d'alléger les coûts des organismes sociaux en réduisant la consommation de médicaments, en évitant l'aggravation de certaines affections et parfois même en rendant inutiles certaines interventions chirurgicales.

Ainsi, le redoutable dilemme entre l'amélioration de l'état de santé de nos concitoyens et la nécessaire maîtrise des coûts trouve, dans le thermalisme, un élément important de réponse que les Pouvoirs Publics entendent ne pas négliger.

C'est la raison, d'ailleurs, pour laquelle depuis l'instauration de notre système de protection sociale un effort certain a été entrepris, en autorisant la prise en charge des cure thermale par les organismes d'assurance-maladie, tant en ce qui concerne la surveillance médicale et les soins que la participation aux frais d'hébergement et de transports des curistes.

Mais il importe aujourd'hui qu'une attention particulière soit apportée à l'aspect économique des thérapeutiques employées, en termes de coût et d'efficacité. La situation actuelle des finances de la Sécurité Sociale en France ne permet pas en effet de faire l'impasse sur de telles questions.

C'est pourquoi un effort doit être entrepris en matière de recherche et d'évaluation des thérapeutiques thermales afin de mieux apprécier l'apport de la crénothérapie dans notre système de soins et de renforcer sa justification scientifique aux yeux du corps médical. Ces recherches devront être conduites en étroite collaboration entre les Pouvoirs Publics, les professions du thermalisme et le Haut Comité du Thermalisme et du Climatisme.

Je suis heureux de constater que les thèmes mêmes qui ont été mis à l'ordre du jour de la manifestation qui nous réunit tous aujourd'hui, dans les Vosges, s'inscrivent directement dans le cadre de ces préoccupations. Les informations et les observations cliniques qui vont pouvoir s'échanger entre les spécialistes étrangers et français, à cette occasion, ne manqueront pas de retenir l'attention de tous ceux qui se préoccupent de l'avenir du thermalisme.

Je forme donc des vœux, Monsieur le Président, Messieurs, pour le bon déroulement de votre XXXe Congrès.

C'est avec le plus grand intérêt, soyez-en persuadés, que le Ministre des Affaires Sociales et de l'Emploi, et moi-même, prendrons connaissance des conclusions de vos travaux, qui contribueront, j'en suis certain, à éclairer l'action des Pouvoirs Publics en faveur du thermalisme et du climatisme.

Je vous remercie de votre attention.
Session 1
Mécanismes et effets de la cure de diurèse

Calciurie et oxalurie
Lithiase oxalo-calcique

J. THOMAS, E. THOMAS, G. CHARRANOS-MAISTRE,
C. BARTHELEMY, B. SLEIMAN, P. DESGREZ, J.C. LEGRAND *
(Paris)

Ce travail fait le point de bilans calciques et oxaliques systématiques, réalisés chez des sujets atteints de lithiase oxalo-calcique, suivis en cure thermale dans la station de Vittel. Ils ne représentent qu’une partie d’un effectif beaucoup plus important. Ils ont été pris dans un ordre chronologique à partir de 1970, période où devint possible l’évaluation de l’oxalurie par dosage chromatographique [1].

Cette étude n’a porté que sur des cas de lithiase oxalo-calcique, c’est-à-dire où toutes les données cliniques, radiologiques et biologiques, notamment l’analyse de calculs, avaient confirmé qu’il s’agissait bien de lithiase exclusivement oxalo-calcique, ou oxalo-phospho-calcique, mais à large dominante oxalo-calcique. Pour chaque sujet, la calculie de 24 heures a été dosée au moins une fois (2 618 dosages pour 1 000 cas). Elle a été considérée comme normale, lorsque le chiffre trouvé, au la moyenne de plusieurs dosages, ne dépassait pas 300 mg par 24 heures. L’oxalurie, dans tous les cas, sans exception, a été dosée au moins trois fois (total 3 653 dosages). Nous avons rappelé antérieurement que les valeurs physiologiques du sujet sain par cette technique de dosage : 30 mg ± 8 mg chez l’homme et 25 mg ± 8 mg chez la femme, et l’enquête statistique nous a permis de considérer comme limite maximale physiologique, pour une moyenne de 3 dosages ou plus, 38 mg. Nous avons donc adopté les critères d’oxalurie normale quant l’oxalurie est inférieure à 38 mg et d’hyperoxalurie quand la valeur moyenne de 3 dosages ou plus est supérieure à 38 mg. Nous avons distingué deux variétés d’hyperoxalurie, l’hyperoxalurie permanente où toutes les valeurs dosées effectuées sont supérieures à 38 mg, l’hyperoxalurie intermittente avec des valeurs inférieures et des valeurs supérieures à 38 mg, la moyenne de plusieurs dosages pour un même sujet étant égale ou supérieure à 38 mg.

RÉSULTATS GLOBAUX

Le nombre des calciuries normales est de 511 (51,1 p. cent), celui des hypercalciuries de 489 (48,9 p. cent).
Le nombre des oxaluries normales est de 411 (41,1 p. cent), celui des hyperoxaluries de 586 (58,6 p. cent). Pour celles-ci, il y a 360 hyperoxaluries permanentes (36 p. cent du total), et 226 hyperoxaluries intermittentes (22,6 p. cent du total).

Ainsi, les calciuries normales et les hypercalciuries sont à peu près en nombre équivalent. En ce qui concerne l’oxalurie, elle est normale 4 fois sur 10 et augmentée 6 fois sur 10. Les hypercalciuries permanentes sont plus nombreuses que les hyperoxaluries intermittentes (t = 4,58 ; p < 0,001). La valeur moyenne des hypercalciuries permanentes est de 50,98 mg (sigma = 9,98), et celle des hyperoxaluries intermittentes de 42,50 mg (sigma = 5,09 ; t = 13,59) différence significative p < 0,01.

Pour l’ensemble des 1 000 cas, la calciurie moyenne est de 298,62 mg, et l’oxalurie moyenne de 40,32 mg.

Le calcul montre que le pourcentage des oxaluries normales est plus fort si la calciurie est normale (49,7 p. cent d’oxaluries normales) que si la calciurie est élevée (32,7 p. cent d’oxaluries normales) (t = 7,9 1 ; p < 0,001). Pourtant, le calcul statistique montre qu’il n’y a pas de corrélation entre les valeurs de la calciurie et de l’oxalurie sur l’ensemble de ces 1 000 cas.

Si l’on étudie le mode d’association de la calciurie et

* Institut National d’Hydrologie et de Climatologie, Laboratoire de Biochimie Médicale [Pr J.C. Legrand], CHU Pitié-Salpêtrière, 91, boulevard de l’Hôpital, 75013 PARIS.

Presse thermale et climatique, 1988, 125, no 5.
de l'oxalurie, on constate que, globalement, dans 25 p. cent des cas, il n'y a aucune perturbation, que dans un tiers des cas, il y a association d'hyperoxalurie et d'hypercalcurie; et qu'environ 4 fois sur 10, il n'y a qu'une seule perturbation, une hypercalcurie ou une hyperoxalurie, laquelle est plus souvent permanente ou intermittente.

RÉSULTATS EN FONCTION DU SEXE

Cette étude réunit 688 hommes et 312 femmes. Statistiquement, les valeurs de la calcurie et de l'oxalurie sont nettement plus faibles chez la femme que chez l'homme. Chez la femme, la proportion de lithiasiques n'ayant aucune perturbation est de 40,1 p. cent; chez l'homme, elle est de 18,4 p. cent (différence significative p < 0,001). Chez l'homme, l'association d'hyperoxalurie et d'hypercalcurie est de 40 p. cent; elle est de 17,7 p. cent chez la femme (p < 0,001). Chez l'homme comme chez la femme, la proportion de perturbations isolées, hypercalcurie ou hyperoxalurie (plus de type permanent que de type intermittent) est de l'ordre de 40 p. cent, respectivement 41,6 p. cent et 42,2 p. cent.

Ces derniers résultats confirment l'existence de perturbations plus importantes et plus fréquentes chez l'homme que chez la femme.

RÉSULTATS EN FONCTION DE L'ÂGE

Nous avons regroupé les 1 000 cas par tranches de 10 ans d'âge, et étudié dans chaque tranche :
— la valeur moyenne de la calcurie et de l'oxalurie ;
— le pourcentage d'hypercalcuries et d'hyperoxaluries ;
— le mode d'association des calcuries et des oxaluries normales ou pathologiques ;
— la corrélation éventuelle entre calcurie et oxalurie.

Valeur moyenne de la calcurie et de l'oxalurie par tranches de 10 ans d'âge, chez l'homme et chez la femme

Chez l'homme, la valeur moyenne de la calcurie baisse dans la tranche d'âge de 60 à 69 ans (263 mg; sigma = 129), elle est statistiquement différente de celle de la tranche d'âge de 20 à 29 ans (m = 345,4 mg; sigma = 145,8; p < 0,001). L'oxalurie la plus basse est celle également de la tranche d'âge de 60 à 69 ans, mais on ne peut trouver de différence significative des valeurs moyennes de l'oxalurie dans aucune des tranches d'âge.

Chez la femme, comme chez l'homme, la calcurie la plus basse est celle de la tranche d'âge de 60 à 69 ans: différence p < 0,02 entre les tranches de 40 à 49 ans et de 60 à 69 ans. Les valeurs moyennes de l'oxalurie sont les mêmes dans toutes les tranches d'âge.

Pourcentages d'hypercalcuries et d'hyperoxaluries par tranches de 10 ans d'âge chez l'homme et chez la femme

Le pourcentage d'hypercalcuries et d'hyperoxaluries permanentes et intermittentes est toujours plus élevé chez l'homme que chez la femme.

Chez l'homme, c'est dans la tranche d'âge de 20 à 29 ans, que le taux d'hypercalcuries et d'hyperoxaluries est le plus élevé. Chez la femme, le pourcentage de calcuries et d'oxaluries normales et pathologiques ne diffère significativement dans aucune des tranches d'âge.

Modèles d'association des calcuries normales ou pathologiques et des oxaluries normales ou pathologiques chez l'homme et chez la femme

Les résultats de l'enquête peuvent se schématiser ainsi.

Chez l'homme, c'est dans la tranche d'âge de 20 à 29 ans que se situent les plus importantes perturbations. Les cas d'association d'hypercalcuries et d'hyperoxaluries, permanentes ou intermittentes, atteignent 51,4 p. cent, les cas d'hypercalcurie isolée 14,3 p. cent, les cas d'hyperoxalurie isolée 23,8 p. cent (permanentes 16,2 p. cent, intermittentes 7,6 p. cent). Ainsi, l'absence totale d'anomalies ne se rencontre que dans 10,5 p. cent des cas.

Chez la femme, dans cette même tranche d'âge, de 20 à 29 ans, les cas où il existe deux anomalies sont très peu nombreux, 7,7 p. cent, et la perturbation la plus fréquente est l'hypercalcurie isolée, 30,8 p. cent. Dans 34,6 p. cent, il n'y a aucune anomalie.

Corrélations entre calcuries et oxaluries

Il n'y a pas, chez l'homme, de corrélation entre calcurie et oxalurie.

Chez la femme, on ne retrouve pas de corrélation dans les tranches d'âge de 20 à 29 ans et de 30 à 39 ans. Il existe une corrélation entre calcurie et oxalurie dans les tranches de 40 à 49 ans (p < 0,002), de 50 à 59 ans (p < 0,002) et de 60 à 69 ans (p < 0,05).

CONCLUSION

Les résultats de cette enquête biologique portant sur 1 000 cas de lithiasis oxalo-calcique se résument ainsi.

— Globalement, on trouve 48,9 p. cent d'hypercalcuries et 58,6 p. cent d'hyperoxaluries, dont 36 p. cent d'hyperoxaluries permanentes et 22,6 p. cent d'hyperoxaluries intermittentes. On compte 25 p. cent de cas où calcurie et oxalurie sont normales, 32,9 p. cent de cas où une hypercalcurie s'associe à une hyperoxalurie (permanente : 20,1 p. cent; intermittente : 12,8 p. cent) et 41,7 p. cent de cas où une seule anomalie est retrouvée, hypercalcurie isolée ou hyperoxalurie permanente ou intermittente.

— L'étude en fonction du sexe donne les résultats suivants : l'effectif de 1 000 cas correspond à 688 hommes et 312 femmes; la calcurie et l'oxalurie sont nettement plus élevées chez l'homme que chez la femme; il n'y a pas de corrélation entre la calcurie et l'oxalurie chez l'homme, il y en a une chez la femme; les cas sans hypercalcurie ni hyperoxalurie sont beaucoup plus fréquents chez l'homme que chez la femme; les cas où hypercalcurie et hyperoxalurie existent conjointement sont beaucoup plus fréquents chez l'homme que chez la femme.

— L'étude en fonction de l'âge conduit aux données suivantes : par tranches de 10 ans d'âge, la calcurie et l'oxalurie sont toujours plus élevées chez l'homme que chez la femme; chez l'homme, c'est la tranche d'âge...
entre 20 et 29 ans qui présente le plus de perturbations, et dans 10 p. cent des cas seulement, il n'y a ni hypercalcuvie ni hyperoxalurie; chez la femme, les valeurs de calcium ne présentent pas de différence significative dans les différentes tranches d'âge et celles de l'oxalurie non plus; chez l'homme, il n'y a pas de corrélation entre calcuvie et oxalurie quelle que soit la tranche d'âge; chez la femme, il n'y a pas de corrélation dans les tranches d'âge de 20 à 29 ans, ni de 30 à 39 ans; dans les tranches supérieures, jusqu'à 60 ans, l'étude statistique montre l'existence d'une corrélation.

SUMMARY

CALCIUM OXALATE UROLITHIASIS
EPIDEMIOLOGY. CALCIURIA AND OXALURIA

1 000 calcium oxalate nephrolithiasis have been the subject of a two folds study, the 24 hours calciuria on the one hand with 2,168 analysis, and the 24 hours oxaluria on the other hand with at least 3 analysis per patient for a total of 3,653 by gas chromatography.

We have considered as hypercalciuria the patients presenting a calcium rate per 24 hours of more than 300 mg. For the oxaluria we have considered as normal the persons presenting an average rate per 24 hours below 38 mg. In the cases of the hyperoxaluria those are either continuous with all analysis over the 38 mg/24 hours or discontinuous with sometimes below and sometimes over the 38 mg but averaging over that value.

As a result, on account for 48,9 percent of hypercalciuria, 36 percent continuous and 22,6 percent discontinuous. In 25 percent of the cases, calciuria and oxaluria are normal. Once out of three hypercalciuria and hyperoxaluria coexist, and in 40 percent of the cases, there is only one disturbance.

The total effectif was of 688 men and 312 women. Oxaluria is higher for the men, and the hyperoxaluria percentage is higher than it is the case for the women, what ever the agewise block considered.

Abnormalities are this notably more noticeable in the man, and in the case of the block of 20-29 years old there are only 10 percent of normal results.

REFERENCES

Une nouvelle indication de la cure thermale de Vittel
L'expulsion de gravielle ou de calculs restants après lithotripsie

J. THOMAS *
(Vittel)

Le traitement urologique des calculs rénaux s'est considérablement modifié ces dernières années par l'apparition des nouvelles techniques, néphrostomie percutanée et lithotripsie extracorporelle.

Mais, souvent, ces nouvelles méthodes, et surtout la lithotripsie extracorporelle, laissent en place de la poussière lithiasique ou des fragments de calculs qui ont éclaté. Ces débris lithiasiques restent à l'intérieur d'un ou plusieurs calices, dans les calices mêmes où ils ont été traités ou à distance de leur siège initial. Ils peuvent migrer secondairement. Ils peuvent aussi demeurer intrarénaux, s'agglutiner et s'accroître. C'est surtout dans les calices inférieurs que demeurent le plus souvent ces fragments restants. La cure thermale doit s'adapter à cette nouvelle pathologie, et nous pouvons déjà rapporter nos premiers résultats du traitement, à Vittel, de tels cas.

PROTOCOLE

EFFECTIFS

Nous réunissons ici 24 observations correspondant toutes à des lithiasises ayant subi une séance de lithotripsie extracorporelle et présentant des fragments lithiasiques caliciels résiduels.

CONDUITE DE LA CURE DE DIURÈSE

La cure de diurèse conserve ses modalités de déroulement classique avec une première absorption hydrique le matin au lit, couché, chez un sujet à jeun et au repos, l'eau étant apportée à la chambre grâce au système de « cure à domicile », distribuant de l'eau de Vittel Grande Source, recueillie au griffon et mise en bouteille quelques
heures avant la consommation. Comme pour les autres curistes, l’absorption hydrique se poursuit à la Source même dans la matinée et dans l’après-midi. Mais, dans ces cas, les dosages hydriques sont toujours très importants, plus progressifs que pour une cure diurétique classique, avec progression plus rapide des doses prescrites au fur et à mesure des consultations médicales successives pendant la durée de la cure thermale. Il nous est arrivé ainsi de prescrire des volumes hydriques quotidiens de 3 à 5 ou 6 litres par jour, la consommation étant toutefois modulée sur la tolérance hydrique de l’intéressé. Il est capital d’obtenir un débit urinaire très nettement accéléré pour faciliter l’entraînement des microcalculs. Ils doivent être chassés par un courant torrentiel. Autre particularité dans les modalités de prescription de la cure diurétique : le curiste va subir de l’hydrothérapie à visée migratrice, sur laquelle nous allons revenir. Il est évidemment souhaitable que, pendant que l’iode est en cours, le flux urinaire soit important. Quelle que soit l’heure prévue pour l’hydrothérapie, 15 à 20 minutes avant, nous faisons absorber un volume variable de 200 à 500 ml d’eau de Vittel Grande Source.

HYDROTHERAPIE

L’expérience apportée par la lithothripsie extracorporelle nous a montré que le rein était un organe plus résistant qu’on ne le croyait à une stimulation mécanique assez importante. Les ondes de choc, celles notamment réalisées par le lithotripteur Domnl, représentent un traumatisme rénal dont la réalité est suggérée par le fait que la séance thérapeutique est impossible sans anesthésie locorégionale, voire générale, et les patients ne supportent pas les ondes de choc si l’anesthésie est insuffisante. L’hématurie constante, qui se produit dès les premières salves et après plusieurs centaines de « coups », est une autre preuve de l’irritation mécanique rénale. Elle nous est apparue dans ces conditions que les secousses des ondes de choc pouvaient donc être remplacées, sans grand danger pour le rein, par des secousses hydrauliques. Jusqu’à présent, l’hydrothérapie rénale pour la lithiase se contentait de douches « baveuses », lombaires, à jet large grâce à une embouchure oplate, donnant un jet doux, « caressant ». Cette douche chaude avait surtout comme avantage de provoquer une détente des voies urinaires hautes, un relâchement, un élargissement des calices. Cela donne un effet antalgique au niveau de la région lombaire, et cela facilite aussi l’élimination de sable ou de petits graviers. Il nous arrivait également de prescrire des douches rénales à la lance ou des douches « en ceinture », à une pression de 3 à 4 kg. Habituellement, de telles douches durèrent de 3 à 5 minutes.

Pour le traitement hydrothérapeutique post-lithotriptique de la lithiase, nous avons, en fait, adopté deux techniques particulières.

Douches rénales « en ceinture » de longue durée

Dans la plupart des cas, nous avons eu recours à l’appareil nommé « vibrateur hydraulique », mis au point par le Docteur Roger Maire et breveté par la Société générale des eaux minérales de Vittel. Cet appareil permet de diregir, sur la région lombaire, des jets percants grâce à une rampe circulaire entourant partiellement le corps du curiste, et à partir d’une série de robinets étagés sur une rampe verticale. Tous ces jets sont dirigés sur la fosse lombaire intéressée, au niveau souhaité, à la pression désirée, en général progressive, de 1 à 3 et 4 kg. Le malade est placé à la distance voulue, en général à 50, 60 ou 80 cm de la sortie des jets. Il peut s’écarter momentanément, s’il se sent trop « fouetté ». Il peut pivoter et on lui recommande de se présenter aux jets sous des incidences variées.

Ce qui nous a paru en fait plus important, c’est de prolonger la durée de l’hydrothérapie par rapport à la durée des douches « rénales » classiques. C’est ainsi que nous avons conseillé des durées progressives, augmentées par paliers, de 8 à 10 minutes d’abord, puis, par intervalles de quelques jours, 15 minutes, puis 20 minutes, et nous avons prolongé la durée jusqu’à 30 minutes. Nous n’avons jamais prolongé cette hydrothérapie au-delà de 30 minutes.

Dans tous les cas, le traitement a, dans l’ensemble, été bien toléré. Trois fois nous avons noté des réactions écchymotiques sous-cutanées au niveau des points de percussion. Elles nous ont incité à une certaine prudence. Elles ne nous ont jamais contraint à suspendre le traitement. Jamais nous n’avons eu d’envois rénaux, jamais d’hématuries. Nous verrons les résultats avec les observations.

La douche en position verticale inversée

Après la lithothripsie, c’est du calice inférieur que les fragments lithiasiques ont le plus de mal à s’évacuer. Ils représentent les vestiges de calculs polaires inférieurs, mais il peut s’agir de gravier tombé dans les cavités calicielles inférieures, ou de fragments lithiasiques que des calculs initiaux seraient passés à distance, dans le bassinet ou dans les calices sus-jacents. Si la tige calicielle inférieure est un peu étroite, sclérosée dans sa partie juxta-pyélérique, si son trajet est long, les fragments lithiasiques demeurent sur place. De là l’incitation à essayer de mettre ces sujets à la tête en bas, et dans cette position, de pratiquer de l’hydrothérapie expulsive lombaire. Nous avons eu recours pour cela à une table basculante, surtout utilisée en rhumatologie pour traction sur les articulations ou la colonne vertébrale.

Description de la table basculante

La table utilisée est une table de plastique, résistante, dite « table d’inversion Gravity-Guider-série 1011 ». Elle était prévue pour que le patient soit installé sur le dos, mais il peut tout aussi bien se placer en décubitus ventral. Il s’allonge sur la table, de telle façon que son centre de gravité se place sensiblement sur la verticale de la barre de rotation. Par une modification modérée de l’emplacement du patient sur la table, celui-ci provoque une bascule lente, progressive, jusqu’à l’inclinaison voulue. La suspension du corps est assurée par un système de jambières à crochet. L’expérience nous a montré en fait que la position la plus propice était la verticale. Pour les premiers jours, on recourt à une inclinaison intermédiaire et, petit à petit, le curiste s’habitue à l’appareillage. Il tolère et accepte très facilement cette position. Il est suspendu par

Presso thermale et climatique, 1988, 125, n° 5.

* Textiform, 11 bis, rue Jacques-Bouillet, 42400 LORETTE.
les pieds et, les mains au sol, il maintient la position verticale pendant la durée de la douche.

Il est bien évident que la mise du patient dans une telle position ne s’adresse qu’à des cas particuliers. On ne peut l’envisager que chez des sujets jeunes, en règle générale de moins de 50 à 55 ans. Toute anomalie cardiovasculaire, hypertension, cardiopathie, coronarite, toute autre tare viscérale sont, a priori, des contre-indications.

Hydrothérapie sur douche inversée

Quand l’hydrothérapie dans une telle position est envisagée sans contre-indication, que le patient l’accepte et la supporte, le deuxième temps est réalisé. Nous dirigeons le jet d’une douche à la lance sur la fosse lombarde intéressée. La pression du jet est adaptée à la tolérance locale et peut atteindre 2, 3 et même 4 kg. En raison de la position même du sujet, la durée de la douche est restée assez courte, 5 à 6 minutes.

RÉSULTATS

Nous avons jusqu’à présent traité 24 sujets ayant subi une lithotritie extracorporelle et porteurs de fragments résiduels. Le traitement hydrothérapeutique consistait soit en douches en ceinture prolongées, soit en douches verticales inversées, voire les deux associées le même jour.

Trois fois nous avons obtenu une migration lithiasique, totale ou presque, ou partiellement. L’expulsion a pu se faire après crises de coliques néphrétiques ou crises douloureuses atténuées, plus fréquemment sans douleur. Très souvent, l’expulsion s’est faite chez des sujets ayant subi la lithotritie dans les mois précédant la cure et n’éliminent plus aucun gravier depuis longtemps. Dans certains cas, les premières migrations se sont produites dès les premiers jours de la cure, et chez certains, dans la demi-heure, l’heure ou les quelques heures suivant la ou les premières séances d’hydrothérapie.

Dans 11 cas, nous n’avons pas obtenu de migration lithiasique, mais plusieurs fois, l’échec était dû à la même cause que celui de la lithotritie, tige calcifiée trop étroite (deux cas), reins en fer à cheval (une fois), rein hydronephrotique (un cas).

Ainsi, la proportion de succès est, pour ces premières observations, d’environ 50 p. cent. Mais elle peut sûrement s’améliorer, par divers artifices techniques, par une meilleure et plus longue expérience. D’ores et déjà, les premiers résultats sont encourageants et nous laissons espérer que ces méthodes nouvelles pourront être appliquées au traitement éliminateur de certains petits calculs en dehors d’un traitement par lithotritie. Peut-être entre-t-on dans une nouvelle ère du traitement thermal de la lithiase rénale?

SUMMARY

VITTEL’S CURE AFTER EXTRACORPOREAL SCHOCK WAVE LITHOTRIPSY

After extracorporeal schock wave lithotripsy some of the chips of renal stones stay in the calices, and above the lower calices. The hydrous cure and new hydrotherapeutic technics facilitate the elimination of these chips.

The first 24 medical observations are relating with 13 success.

Intérêt du dosage APO A et ApoB en début de cure, fin de cure et un mois après une cure thermale à Capvern-les-Bains

M. JALTEL, C. CONTANT,
P. DUCHENE-MARULLAZ, J. PACCALIN *
(Capvern-les-Bains)

Cette communication a pour but de vous rapporter les résultats préliminaires d’un travail réalisé sur les paramètres du bilan lipidique et sur les variations des apolipoprotéines A1 et B. Le protocole de cette étude a été élaboré en collaboration avec le Pr Paccalin et le travail a pu être mené à son terme grâce à la collaboration du Dr Ebrard et des médecins thermaux de la station de Capvern, sans oublier le personnel du Laboratoire de Biochimie de l’Hôpital d’Orléans. Je les en remercie.

Pourquoi choisir Capvern, station thermale française située dans le département des Hautes-Pyrénées sur le rebord sud-ouest du plateau de Lannemezan? La station possède deux sources minérales mésothermales 21° à 23°C, sulfatées calciques magnésiennes, utilisées depuis fort longtemps en cure de diurèse dans la lithiase urique et oxaliqne. On pouvait se demander si ces eaux n’auraient pas un effet bénéfique sur certaines dyslipémies.

81 curistes ont été sélectionnés par les médecins thermaux de la station au cours des étés 1984 et 1985 en fonction de la pathologie qui avait motivé leur demande de cure à Capvern.

Le protocole d’étude (tableau 1) a prévu, outre la surveillance clinique classique pendant la cure, trois prises de sang:

— en début de cure,

Presses thermale et climatique, 1988, 125, n° 5.
TABLEAU I. — Protocole d’étude.

SELECTION
CHOIX DES CURISTES

VISITE MEDICALE - Debut de cure
questionnaire, dossier medical

MESURES BIOLOGIQUES

TRAITEMENT

SURVEILLANCE MEDICALE

RESULTATS

1 mois
apres cure

— en fin cure soit un écart de 19 à 21 jours entre ces deux prises de sang réalisées par les médecins thermaux.

Les tubes centrifugés à Capvern sont envoyés par poste au Laboratoire de l’Hôpital d’Orléans dans le Loiret. En fin de cure, le curiste reçoit de son médecin une lettre lui demandant un nouveau prélèvement à prévoir un mois après la cure. On lui remet matériel à prélèvement et boîte d’expédition.

Quels ont été les paramètres choisis ?

Aucun recueil d’urines n’a été fait en raison des problèmes de transport.

Des prélèvements de sang avec dosage ont été réalisés :
— uricémie — acide urique sérique à la recherche d’une hyperuricémie associée à une hyperlipémie ;
— phosphatase alcaline et γ GT (gamma-glutamyl-transpeptidase) à la recherche d’une atteinte hépatique associée ;
— bilan lipidique complet avec aspect du sérum, cholestérol total, cholestérol HDL, triglycérides, phospholipides, lipoprotéinogramme, Apolipoprotéine A₁, Apolipoprotéine B, Rapport Apo B/Apo A₁.

Nous limitons cet exposé aux résultats observés avec les dosages des apolipoprotéines A₁ et B. Pourquoi les apolipoprotéines ?

Les apolipoprotéines sont considérées depuis les récents travaux d’Alapovic comme les paramètres les plus prometteurs du bilan lipidique. Comme leur nom l’indique, les apolipoprotéines sont constituées de deux parties, de deux structures très différentes :
— une partie lipidique,
— une partie protéique appelée apoprotéine composée de poly peptides monocaténaires. A la suite d’Alapovic, on distingue différentes apoprotéines : A avec forme A₁ et A₂,
B, C avec forme C₁-C₂-C₃, D, E avec forme E₁-E₂, F, G.

Synthétisées par le foie et l’intestin grêle, les apoprotéines subissent tout au long de leur vie biologique des échanges, des transformations au niveau du sang circulant comme d’ailleurs dans les tissus (tableau II). Ces apoprotéines interviennent aux stades suivants du métabolisme des lipides :
— catabolisme des chylomicrons,
— synthèse des VLDL,
— catabolisme des VLDL sous l’influence de la lipoprotéine lipase, de la lécithine-cholestérol-acyltransférase régulée par l’Apo A₁,
— formation des LDL,
— métabolisme des HDL.

Il s’agit donc d’échanges et de transformations continues où interviennent les apolipoprotéines.

L’apolipoprotéine A₁ se compose d’une seule chaîne polypeptidique de 245 acides aminés. Elle constitue la copule protéique majeure des HDL. Elle joue un rôle dans le transport des lipides, elle active la lécithine-cholestérol-acyltransférase ou LCAT qui fait passer le cholestérol libre en cholestérol estérifié avant de pénétrer à l’intérieur de la molécule d’HDL. La détermination de l’Apo A₁ représente donc un moyen d’évaluer la fraction HDL.

L’apolipoprotéine B joue aussi un rôle dans le transport des lipides. Elle constitue un constituant important des VLDL et LDL et surtout des chylomicrons. Elle se trouve donc liée aux fractions atherogènes.

Ces apolipoprotéines A₁ et B ont été dosées par électro-
TABLEAU II. — Apoprotéines A₁ et B.

<table>
<thead>
<tr>
<th></th>
<th>Apo A₁</th>
<th>Apo B</th>
</tr>
</thead>
<tbody>
<tr>
<td>Chylomicrons</td>
<td>7 %</td>
<td>23 %</td>
</tr>
<tr>
<td>VLDL</td>
<td>Traces</td>
<td>37 %</td>
</tr>
<tr>
<td>LDL</td>
<td>—</td>
<td>98 %</td>
</tr>
<tr>
<td>HDL</td>
<td>67 %</td>
<td>Traces</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Fonctions</th>
<th>Activateur LCAT (lécithine-cholestérol -acyltransférase hépatique)</th>
<th>Transport des lipides</th>
</tr>
</thead>
<tbody>
<tr>
<td>Lieu de synthèse</td>
<td>Intestin, foie</td>
<td>Intestin, foie</td>
</tr>
<tr>
<td>Demi-vie</td>
<td>5 jours</td>
<td>3 jours</td>
</tr>
<tr>
<td>Taux usuels</td>
<td>≥ 1,20 g/l</td>
<td>H : 0,63 << 1,20</td>
</tr>
<tr>
<td></td>
<td></td>
<td>F : 0,50 << 1,20</td>
</tr>
</tbody>
</table>

TABLEAU III. — Etude statistique de l’Apo A₁ portant sur 42 curistes avec trois prélèvements. Taux usuels : ≥ 1,20 g/l.

<table>
<thead>
<tr>
<th></th>
<th>Début de cure</th>
<th>Fin de cure</th>
<th>Mois après cure</th>
</tr>
</thead>
<tbody>
<tr>
<td>Moyenne</td>
<td>1,744 g/l</td>
<td>1,73 g/l</td>
<td>1,933 g/l</td>
</tr>
<tr>
<td>Médiane (50e percentile)</td>
<td>1,63 g/l</td>
<td>1,80 g/l</td>
<td>1,9 g/l</td>
</tr>
<tr>
<td>Extrêmes</td>
<td>0,90 << 3,1</td>
<td>0,9 << 2,74</td>
<td>0,98 << 3,30</td>
</tr>
<tr>
<td>Ecart-type</td>
<td>0,460</td>
<td>0,436</td>
<td>0,458</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th></th>
<th>Début à fin de cure</th>
<th>1 mois après cure</th>
<th>1 mois après cure</th>
</tr>
</thead>
<tbody>
<tr>
<td>Moyenne</td>
<td>0,8 %</td>
<td>+ 11 %</td>
<td>+ 10,8 %</td>
</tr>
</tbody>
</table>

Variation moyenne : 42 observations P

ddl > 30 Début — fin de cure N S
| t apparié | Début — 1 mois après cure N S |
| Fin — 1 mois après cure N S |

TABLEAU IV. — Etude statistique de l’Apo B portant sur 42 curistes avec trois prélèvements. Taux usuels : H = 0,65 < 1,20 g/l. F = 0,50 < 1,20 g/l.

<table>
<thead>
<tr>
<th></th>
<th>Début de cure</th>
<th>Fin de cure</th>
<th>1 mois après cure</th>
</tr>
</thead>
<tbody>
<tr>
<td>Moyenne</td>
<td>1,53 g/l</td>
<td>1,376 g/l</td>
<td>1,475 g/l</td>
</tr>
<tr>
<td>Médiane (50e percentile)</td>
<td>1,50 g/l</td>
<td>1,49 g/l</td>
<td>1,42 g/l</td>
</tr>
<tr>
<td>Extrêmes</td>
<td>1,02 << 2,10</td>
<td>0,70 << 2</td>
<td>0,7 << 2,10</td>
</tr>
<tr>
<td>Ecart-type</td>
<td>0,249</td>
<td>0,267</td>
<td>0,2</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th></th>
<th>Début à fin de cure</th>
<th>1 mois après cure</th>
<th>1 mois après cure</th>
</tr>
</thead>
<tbody>
<tr>
<td>Moyenne</td>
<td>10 %</td>
<td>+ 7,2 %</td>
<td>- 4 %</td>
</tr>
</tbody>
</table>

Variation moyenne : 42 observations P

t apparié Début — fin de cure < 0,001
Début — 1 mois après cure < 0,001
Fin — 1 mois après cure < 0,002

immunodiffusion en utilisant un gel à base d’hydroxyéthylcellulose en présence d’anticorps anti-A₁ et anti-B. Après migration électrophorétique puis coloration, on met en évidence deux pics bien individualisés sous forme de rocket 1 grand pic Apo A₁, un pic plus petit de coloration plus intense c’est l’Apo B.

Sur 42 observations, nous avons eu la possibilité d’étudier les trois prélèvements : début de cure, fin de cure, un mois après cure.

Notre étude statistique a été double :
— calcul des moyennes, médianes, extrêmes, écart-type ;
— étude du t apparié puisque nous ne disposons pas de malades témoins traités par placebo. Ce sont les curistes eux-mêmes qui vont représenter leur propre témoin en utilisant le premier dosage de début de cure comme référence.

L’étude des moyennes des Apo A₁ (tableau III) montre peu de différence entre le début et la fin de cure 1,74 g/l - 1,73 g/l. Par contre, élévation des moyennes entre la fin de cure et un mois après cure 1,73 g - 1,93 g soit une augmentation de 11 p. cent. Donc, augmentation du taux d’Apo A₁ entre l’arrivée en cure et un mois après cure.

L’étude du t apparié appliqué aux 42 curistes avec trois prélèvements ne montre pas de variations significatives entre le début et la fin de la cure, entre le début et un mois après cure ou même entre la fin et un mois après cure.

En ce qui concerne l’apoprotéine B (tableau IV), on a trouvé une baisse des moyennes entre le début de cure et la fin de cure : 1,53 g/l puis 1,37 g/l soit baisse de 10 p. cent. Elle est suivie d’une réascension de 7 p. cent après un mois. Avec le calcul du t apparié, on montre une baisse significative de l’Apo B entre le début et la fin de cure pour p<0,001 entre le début et un mois après cure pour p<0,001.

Après avoir étudié les variations des deux apoprotéines A₁ et B, nous avons étudié l’évolution du rapport Apo B/Apo A₁ (tableau V). Ce rapport est en effet considéré comme l’un des meilleurs rapports pour séparer des populations témoins et des populations à risque cardiovasculaire avec dyslipémie. Au niveau des moyennes, pas de diminution du rapport entre le début et la fin de cure (0,912 puis 0,916). Par contre, ce rapport baisse de 13 p. cent entre

TABLEAU V. — Etude statistique du rapport Apo B/Apo A₁ portant sur 42 curistes avec trois prélèvements.

<table>
<thead>
<tr>
<th></th>
<th>Début de cure</th>
<th>Fin de cure</th>
<th>1 mois après cure</th>
</tr>
</thead>
<tbody>
<tr>
<td>Moyenne</td>
<td>0,912</td>
<td>0,916</td>
<td>0,790</td>
</tr>
<tr>
<td>Ecart-type</td>
<td>0,22</td>
<td>0,24</td>
<td>0,20</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th></th>
<th>Début à fin de cure</th>
<th>1 mois après cure</th>
<th>1 mois après cure</th>
</tr>
</thead>
<tbody>
<tr>
<td>Moyenne</td>
<td>+ 0,4 %</td>
<td>- 13,7 %</td>
<td>- 13,4 %</td>
</tr>
</tbody>
</table>

Variation moyenne : 42 observations P

t apparié Début — fin de cure < 0,001
Début — 1 mois après cure < 0,001
Fin — 1 mois après cure < 0,01

Presse thermale et climatique, 1968, 125, n° 5.

Theoretisch besteht heute jedenfalls Grund genug, die gängige Stereotypie des Natriumzugs bzw. des Verbots natriumhaltiger Heilwasser bei Herz- und Kreislaufkranken zu überprüfen, und zwar nicht nur im akuten Versuch, sondern bei kumulativer Zufuhr, die auch adaptive Reaktionsmechanismen auslösen kann.

Wir haben zunächst in unserem Arbeitskreis bei je 8 gesunden Probanden experimentelle Haustrinkkuren mit zwei Natrium-Hydrogenkobalt-Wässern von unterschiedlichem Natriumgehalt (600 und 1,400 mg/kg) bei täglicher Zufuhr von 700 ml morgens nach dem standardisierten Frühstück durchgeführt und das Blutdruckverhalten täglich unter Ruhebedingungen kontrolliert. Als Vergleichsgruppe dienten 8 weitere Probanden, die in gleicher Anordnung täglich Leitungswasser tranken. Die Ausgangswerte vor Kurbeginn wurden an zwei vorangehenden Tagen gemessen, Nachkontrollen wurden an zwei Terminen nach Ende der Trinkkur durchgeführt.

Als nächster Schritt wurden Kurpatienten einer Herz-Kreislauf-Kurklinik, die im Rahmen der komplexen Kurbetrachtung teilweise mit Trinkkuren eines natriumhaltigen Heilwassers (740 mg/kg) behandelt worden waren, retrospektiv nach Massgabe der Krankenakten auf Veränderungen des Blutdruckverlaufs während der Kur untersucht. Je

Die Kontrolle des Befindens anhand täglicher Kurtagebucheinträgungen ergab keinen Anhalt für eine Befindensverschlechterung durch die Zufuhr des natriumhaltigen Heilwassers. Die Stimmungsnote verbesserte sich sogar signifikant, und die Anzahl der geklagten körperlichen Beschwerden ging im Laufe der Trinkkur ebenfalls signifikant zurück.

Entsprechend dieser Ausgangswertabhängigkeit nahm auch die interindividuelle Streuung der Messwerte, insbesondere bei den systolischen Druckwerten, deutlich ab.

Beim Vergleich der individuellen Verlaufstrends anhand der Regressionskoeffizienten mit den Ausgangsverläufen lag sowohl für den systolischen als auch für den diastolischen Druck der Cross-Over-Point im Bereich pathologisch erhöhter Druckwerte. Dies mag durch das hohe Durchschnittsalter der Probanden bedingt sein.

Die Tatsache, dass die Trinkkur mit natriumhaltigen Heilwässern pathologisch erhöhte Blutdruckwerte auch dann senkt, wenn der Patient medikamentös antihypertensiv behandelt wird, bei balneologischer Kurbehandlung dagegen durch die Trinkkur kein zusätzlicher Effekt erzielt werden kann, spricht dafür, dass der Wirkungsmechanismus der Trinkkur auf die vegetative Umstellung durch die Kurbefundung gegründet ist und damit den sog. Normalisierungseffekten zugerechnet werden muss, zumal es sich ja auch um überdauernde Wirkungen handelt.

Für einen solchen Wirkungsmechanismus sprechen schliesslich auch die Ergebnisse einer letzten Untersuchungsreihe, bei welcher 16 Probanden mit orthostatischer Kreislaufrégulationsstörung eine 4-wochige Trinkkur mit täglich 700 ml eines Natrium-Hydrogenkarbonat-Säuerlings mit 600 mg/kg Natriumgehalt durchführten. Zur Objetivierung der orthostatischen Regulationsleistung wurde täglich im Stehversuch der Orthostase-Quotient nach Weckenmann gemessen, auch während einer 8-tägigen Vorbeobachtung und einer bis zu 14-tägigen Nachbeobachtungsphase.

Auch bei dieser Untersuchungsreihe war die Heilwasserwirkung auf die Blutdruckregulation vom Ausgangswert abhängig. Sie war im Einzelfall umso stärker, je grösser die Normabweichung im Sinne der orthostatischen Labilität vor Beginn der Trinkkur war. Dies spricht dafür, dass es sich nicht um eine einfache Verschiebung der orthostatischen Kenngrössen handelt, sondern um den Ausdruck einer funktionellen Normalisierung durch adaptive Umstellungen der Regulationsleistungen.

Untersuchungen über die adaptive Wirkung von Trinkwasser

C. GUTENBRUNNER *
(Marburg/Lahn)

Bei kurmässig wiederholter täglicher Zufuhr von Heilwässern zeigt sich, dass diese unmittelbaren Reizwirkungen einen längerfristigen Reaktionsprozess auslösen, der alle Zeichen einer adaptiven Umstellung des Organismus aufweist. So liessen sich — auch bei reinen Hausbrinkuren, bei denen also alle sonst mitwirkenden Kurfaktoren ausgeschlossen sind — als erstes charakteristisches Merkmal periodische Schwankungen der Cortisolaußensektion im Nachtharn nachweisen, deren Periodendauer im Bereich von etwa 7 Tagen lag und die damit die typische Zeitstruktur sog. funktioneller Adaptationsprozesse aufwiesen. Sie waren bei den Leitungswasserkontrollen nicht nachweisbar oder deutlich geringer ausgeprägt.

Die therapeutische Bedeutung adaptiver Umstellungen liegt aber insbesondere in der Steigerung der regulatorischen Leistungen des Organismus. Diese äussert sich in einer

* Institut für Arbeitsphysiologie und Rehabilitationsforschung der Universität Marburg/Lahn und Institut für Kurmedizinische Forschung Bad Wildungen (Direktor: Prof. Dr. G. Hildebrandt).

Presse thermale et climatique, 1988, 125, n° 5.
Rückstellung von Funktionsabweichungen auf den Normbereich, was in zahlreichen Untersuchungen für andere Formen der Kurbehandlung bereits nachgewiesen werden konnte.

Bei kombinierten kurortischen Trinkkuren betrifft die Normalisierungswirkung auch die Harnkonzentrationen steinbildender Substanzen, wobei nicht nur die Ausscheidungsleistungen der Nieren, sondern auch komplexe Umstellungen im gesamten Zellstoffwechsel mitbetroffen sein müssen.

So zeigt die Harnsäurekonzentration im 8-Stunden-Nachtthorn im nächsten Bild bei kurmässigem Zufuhr von Calcium-Magnesium-Hydrocarnatom-Wässern bei insgesamt abnehmender Tendenz die charakteristischen periodischen Schwankungen mit etwa 7-tägigen Abständen der Maximallage.

Wie das letzte Bild zeigt, waren die individuellen Werte bei den hier untersuchten Patienten, die unter rezidivierender Urolithiasis litten, zu Kurbeginn breit verteilte, wobei sowohl stark erhöhte Werte, die über der Harnsäure-Ausfallsgrenze lagen, als auch stark erniedrigte Messwerte auftraten. Am Ende der kombinierten Trinkkurbesichtigung hatten sich die Messwerte der Harnsäurekonzentration bei signifikanter Reduktion der Variabilität deutlich auf den Normbereich konzentriert so dass die Werteverteilung nunmehr gut mit derjenigen gesunder Versuchspersonen übereinstimmte. Bei den hier untersuchten Patienten fand sich darüber hinaus eine signifikante Reduktion der Phosphatkonzentration und des Calcium-Magnesium-Quotienten.

Insgesamt zeigt sich also, dass die Trinkkur über die bekannten pharmakologischen Wirkungen hinaus auch adaptive Langzeitwirkungen besitzt. Diese führen u.a. zu einer Verbesserung der renalen Elektrolyteleiminarion und Normalisierung der Diureseleistung. Von besonderer therapeutischer Bedeutung ist aber, dass auch bei Rezidiv- harnsäurerkrankungen signifikante Normalisierungen der Harnkonzentrationen lithogene Harnbestandteile erreicht werden können.

New observations on « bath diuresis »

The atrial natriuretic factor (ANF) during water immersion

W. SCHNIZER *, H. KNORR *, P. SCHÖPS *,
A.L. GERBES **, R.M. ARENDT **,
E. STANGL **, N. SEICHERT *

(Munich)

Influence of immersion in water on kidney function has been the subject of several investigations [10]. Heat-out immersion (HOI) induces an excretion pattern with intensification of diuresis, natriuresis, kaliuresis, osmotic and water clearance. The increase of the central blood volume is considered to be the primary cause; this occurs in consequence of the immersion in water in the region of the thoracic vessels. Accordingly, this is a regulatory mechanism within the homeostasis of blood volume and water-electrolyte balance of the body, although the exact mechanisms of action have not yet been clarified.

According to the hypothesis of GAUER and HENRY [14], the intensified diuresis is based on a reflex suppression of antidiuretic hormones (ADH), which is mediated by a stimulation of a cardiopulmonary mechanoreceptors. This is supported by findings according to which plasma levels of ADH are indeed reduced during HOI [12]. On the other hand, this could not be confirmed by all authors [19, 23].

Another hormonal immersion effect concerns the decrease of plasma aldosterone [6,9,11]. This has been associated with increased excretion of sodium, although this does not constitute a complete description of the process [8]. The postulate of an natriuretic factor has hardly led to any progress here for the time being. The atrionatriuretic factor (ANF) is a peptide hormone which is synthesized and released in the atrial musculature of the heart and which is expected to be an important mediator within circulatory and extracellular volume control. Discovery has re-aroused interest in the hormonal and renal effects of immersion in water.

In the present investigation, we have examined the influence of immersion in water on the secretion on ANF.

* Institute of Medical Balneology and Climatology, Munich University, Marschmannstraße 17, 800 MÜNCHEN 70.
** Departments of Medicine I and II, Munich University Medical School.
METHODS

A total of 25 healthy subjects (nine female, 16 male) aged from 23 to 38 years old participated in the investigation. All subjects were informed about the purpose and implementation of the study. They were eating normally and were not subject to any restriction of salt and water on the experimental day.

The experimental protocol was as follows: after complete emptying of the bladder, the patient rested in a sitting position under comfortable conditions of temperature for one hour. In order to obtain blood samples, a catheter was introduced into a forearm vein and fixed during the rest period. After passing urine once more, the patient moved into a water bath (34 ± 0.2°C) with a depth of immersion up to the clavicles. The immersion phase as well as a period of followup observation lasted one hour in each case. Urine was collected again at the end of each hour.

At the beginning of each of the three trial phases, the patients drank 250 ml of water. Blood samples were taken before, 30 and 60 minutes after commencing the bath as well as 30 and 60 minutes after the end of the bath. The following analyses of the urine were carried out: sodium and potassium (flame photometry), creatinine (Jaffé reaction) and osmolality (lowering of freezing point). Furthermore, the osmotic and free water clearance as well as the glomerular filtration rate were determined.

The ANF was determined in the extracted plasma by radioimmunological assay. Details of the analysis have already been described [4].

The results are presented as mean value ± SEM. Differences were checked for significance on the basis of the t test.

RESULTS

The findings on the diuretic effect of immersion and on electrolyte excretion are shown in Figure 1. Accordingly, the thermoneutral bath for an increase in the amount of urine (V) averaging 1.41 ± 0.19 ml/min to 5.54 ± 0.62 ml/min. In the postimmersion phase, values of 3.10 ± 0.43 ml/min could be measured. The immersion diuresis occurred in all subjects even if to differing extents. The urine flow had less than doubled only in three persons.

A natriuresis raised by the bath (U\textsubscript{Na}V) could be demonstrated in 88% of the subjects. An enhancement of sodium excretion by an average of 0.168 ± 0.119 mmol/min to 0.328 ± 0.033 mmol/min (199%) was found. The decline of the values in the postimmersion phase is indicated with 0.216 ± 0.027 mmol/min. Altered excretion values for potassium (U\textsubscript{K}V) could also be detected. There was a rise to 214% of the initial value.

A nonsignificant increase of creatinine clearance (C\textsubscript{Cr}) was shown from the clearance determination. The osmotic clearance (C\textsubscript{osm}) as well the free water clearance (C\textsubscript{H2O}) rose to 185% and 158% respectively.

The results of the determinations of the atrionicatriuretic factor (ANF) are listed in Figure 1. The HOI led to a distinct reaction. The initial values were 6.00 ± 0.58 fmol/ml. Under the conditions of HOI, it rose with increasing duration of immersion and reached about twice the initial values on average after one hour. At the end of the bath, they subsided again within the one hour period of followup observation. There was an appreciable individual variation in the intensity of the reaction. Thus three subjects did not show any alterations of ANF and two subjects showed fourfold to sevenfold increases. In terms of the time course, 20% of the test subjects had already attained the maximum plasma concentration after a bath duration of 0.5 hours.

DISCUSSION

The mechanisms responsible for the increased excretion of urine and electrolytes owing to a thermoneutral immersion bath which has been known for a long time have not been clarified completely. Investigations so far have shown that the redistribution of the blood volume with central hypovolemia as primary consequence of immersion plays a role in the renal effects. According to Arborelius et al. [2], intrathoracic blood volume (about 700 ml) as well as central venous blood pressure (about 18 mmHg) rise during HOI.

The significance of immersion diuresis as a volume-regulatory reflex (Gauer and Henry [14]) with stimulation of stretch-sensitive atrial receptors, stimulation of vagal efferents and subsequent suppression of the antidiuretic hormone has not been recognized without restrictions. This theory could be confirmed in the dog, but had no effect on the course of immersion diuresis [16, 17] in a bilateral cervical vagotomy or raised atrial pressures in primate experiments. Altogether, the view that suppression of ADH is to be considered as the main mechanism of the effect has been undermined by animal experimental findings and human studies [16, 17, 19, 23, 25]. A suppression of the ADH activity, which has been reported in several investigations, appears to be linked to special experimental conditions. In contrast to the dehydrated state, an unequivocal reduction of the ADH levels cannot be attained by HOI in subjects without fluid restriction, although there is still an enhancement of diuresis [20].

Immersion diuresis is accompanied by the raised excretion of a series of electrolytes [10]. The regularly occurring natriuresis as well as an increased excretion of osmotically active substances is especially striking. Our own results correspond to these (Fig. 2). Since a suppression of a renin-angiotensin-aldosterone system by HOI has been variously reported [9, 11], it was logical to attribute natriuresis

Fig. 1. — Alterations of the atrionicatriuretic factor (ANF) in blood plasma during and after thermoneutral immersion in water for one hour.
to a reduced secretion of aldosterone. On the other hand, further findings show that the aldosterone mechanism cannot play the crucial role [8].

The suspicion that besides aldosterone further hormones are involved in the control of sodium homeostasis has been discussed for a long time. Thus a humoral natriuretic substance has been postulated and also demonstrated indirectly. Quite apart from this, a further regulatory system has become known with the discovery of the atrionatriuretic factor (ANF), of which the coordinated interaction with humoral, neural and hemodynamic functions is involved in volume, pressure and electrolyte homeostasis in mammals.

Experiments have been reported according to which a rapid and pronounced diuresis and natriuresis occurred owing to intravenous application of atrial extracts in the rat [7], and the underlying active agent could be characterized as a peptide. An intensive study on the physiology and pathophysicsiology of ANF has commenced, especially since purification, sequencing and synthesis of the substance has been achieved within a few years [5, 18, 29]. Further effects which have been described are above all vasoalexation, lowering of blood pressure as well as inhibition of the secretion of the renin-angiotensin-aldosterone system [3, 24, 28].

ANF is contained in secretory granules of the cardiac auricles, although its physiological release mechanism has not been unequivocally clarified. Observations so far suggest that functional states or maneuvers which entail volume and stretch stimuli for the atria lead to an increase of plasma ANF values. It was logical to test the hypothesis as to whether the thoracic hypervolemia caused by water immersion is to be correlated in terms of the elevation of the atrial pressures and the renal effects with stimulation of ANF secretion.

Our present findings prove a significant elevation of ANF values during HOI. They confirm our earlier results obtained in a small group of subjects [15]. In the meantime, these results could be reproduced [1, 13, 26, 27] in other immersion studies in animals and humans. It could be shown that a rise of ANF averaging 27% already occurs after ten minutes in the bath [15]. Even in immersion for several hours, an increase of the initial values by two to three times is to be reckoned with.

After the end of immersion, there is a regression of the alternations within about one hour, which is essentially attributable to the relatively short half-life of ANF (about three minutes) in the blood.

In view of the fact that water immersion is accompanied by an increase of the central blood volume, these results support the idea that a volume or a pressure stimulus in the atria of the heart is one of the physiological mechanisms involved in the regulation of ANF secretion. In relation to the known renal effects of ANF, the increased circulating ANF in immersion might be linked to the diuretic and natriuretic action of the bath. Interactions of ANF with other regulatory hormones of volume and electrolyte homeostasis must be investigated further in this regard.

SUMMARY

In order to clarify the mechanisms of action of immersion diuresis, the effects of a thermoneutral, one-hour bath (head-up immersion) on the concentration of atrionatriuretic factor (ANF) in the blood was investigated. Unequivocal increases of ANF values occurred in consequence of the bath. The findings indicate that atrionatriuretic hormone is released owing to the central hypervolemia due to the immersion, and this may play a role in inducing the immersion diuresis and natriuresis.

REFERENCES

Lithiase rénale et métabolisme phospho-calcique
Place du thermalisme

C. PETIT *

(Contexteville)

Jusqu'à ces dernières années, le rôle de l'hypercalcurie semblait prédominant dans la lithiase calcique d'où les efforts concentrés sur l'étude du métabolisme phospho-calcique et sur la correction de ses perturbations. Le parallellisme entre la gravité de la lithiase et l'importance de l'hypercalcurie est actuellement remis en question. Le rôle de l'acide oxalique et de l'acide urique dans la lithohégénèse calcique est de plus en plus à l'ordre du jour. La défaillance des inhibiteurs de la cristallisation est sans doute l'élément prépondérant.

Le thermalisme a été rejeté dans l'ombre par les progrès de la thérapeutique bien qu'aucun traitement de la lithiase calcique n'ait pu se prévaloir d'une efficacité authentique.

Les eaux diurétiques (en France : Capvern, Contrexéville, Evian, Vittel, etc) déclenchent une diurèse liquide et solide favorisant l'expulsion de calculs de taille raisonnable et exercent une action générale complexe sur de nombreux facteurs participant à la formation des calculs. D'où la place conservée du thermalisme dans le traitement de certaines formes de lithiase.

La fréquence de la lithiase augmente régulièrement depuis un siècle en Occident. En France, un million de personnes sont lithiasiques. La répercussion de cette affection sur les dépenses de santé est appréciable. La relative rareté de la maladie pendant les 2 guerres mondiales illustre la responsabilité de l'évolution des habitudes alimentaires (augmentation de la ration de protéines animales et de glucose aux dépens des céréales) et de la transformation du mode de vie (stresses, sédentarité) dans la progression de la lithiase à l'intérieur des pays industrialisés. D'où la possibilité d'infléchir cette courbe ascendante.

La plupart des situations métaboliques favorisant la lithiase sont connues mais la cause précise de la formation des calculs reste mal éclairée.

L'urine constitue un défi aux lois de la cristallisation. C'est une solution très complexe et variable contenant :

— d'une part, des substances cristalloïdes souvent en sur saturation : calcium, acide oxalique, acide urique, phosphore, cystine, etc.,

— et d'autre part, certaines substances inhibitrices de la cristallisation (encore insuffisamment connues) : pyrophosphate inorganique, diphosphonates, citrates, glycosaminoglycans, oligo-éléments tels le zinc et le fluor, un inhibiteur de la cristallisation de l'oxalate, etc.

La lithiase résulte de la rupture de cet équilibre.

L'approche diagnostique et thérapeutique de la maladie passe par :

— le bilan biologique, constat ponctuel et variable, normal dans 30 p. cent des cas ;

— l'analyse du calcul : l'analyse chimique conventionnelle est dépassée parce qu'imprécise ; l'analyse cristallographique (optique et/ou spectrophotométrie infrarouge) est idéale car elle définit tous les constituant et précise l'architecture du calcul ; elle raconte son "histoire".

* Attaché de Consultation à la Clinique Urologique du C.H.U. de Nancy, 54500 VANDOEUVRE-LES-NANCY.
MÉCANISMES ET EFFETS DE LA CURE DE DIURÈSE

DANS LE TRAITEMENT DE LA LITHIASIS RÉNALE

Durant ce premier demi-siècle, le thermalisme figurait parmi les traitements de choix des maladies métaboliques : goutte, diabète non insulino-dépendant et lithiase rénale. Depuis 20 ou 30 ans, les progrès de la thérapeutique ont fait douter de la crénothérapie bien qu’aucun traitement de la lithiasis calcique ne puisse se prévaloir d’une efficacité authentique. En effet, la lithiase est, comme nous l’avons vu, une maladie complexe, multifactorielle, où entrent en jeu l’intestin, le système osseux, le rein, le système endocrinien et le système neurovégétatif.

Ces eaux déclenchent une diurèse liquide. Le calcium provoque par vasodilatation une augmentation de la filtration glomérulaire. D’autre part, le taux faible de sodium engendre une baisse de la réabsorption tubulo-proximale de l’eau. L’hypervolémie initiale occasionne une freinée de la sécrétion de l’hormone antiduréique, du système rénine-angiotensine et de la sécrétion d’aldostérone, celle-ci occasionnant secondairement une augmentation de la diurèse et de la natriurèse.

Les eaux diurétiques déclenchent également une diurèse solide : diminution d’urée et d’acide urique, diminution chez les lithiasiques infectés et polyopérés d’agrégats cellulomucueux, de débris fibrino-hématiques et de dépôts minéraux constituant autant d’amonces de récidive ou d’aggravation de la lithiase. Il a également été avancé que le décapage épithelial urinaire fréquemment constaté dans les sédiments pouvait provoquer une sorte de rénovation du méphalithium et diminuer le risque lithiasique, les plaques de Randall paraissant se former essentiellement au niveau des zones épithéliales lésées.

Ces eaux diurétiques engendrent également l’expulsion (immédiate ou plus souvent retardée) de calculs de taille raisonnable. Ceci est rendu possible par la chasse hydrique qu’elles occasionnent, par augmentation de pression, par décapage épithelial, désengagement des concrétions et également par action périostérale sur la voie excrétrice, les eaux sulfatées calcaires et magnésiennes provoquant, ainsi que cela a été montré sur l’organe isolé d’animal, une augmentation du tonus de la voie excrétrice, de la fréquence des contractions de l’uretère et une diminution de leur amplitude.

Ces eaux diurétiques ne provoquent pas seulement une diurèse liquide et solide, elles possèdent également une action métabolique. Elles abaissent l’oxalurie à court terme par réduction de l’absorption intestinale (chéliation de l’acide oxalique par le calcium et le magnésium) et à plus long terme par un mécanisme totalement inconnu. Elles peuvent élever dans certains cas la calcurie surtout chez les hypercalciuriques hyperabsorbants mieux que le sulfate de calcium soit peu absorbable. Elles augmentent systématiquement la magnésurie et abaissent le rapport calcium/magnésium qui est régulièrement augmenté chez les lithiasiques.

Ces eaux diurétiques ont une action antilithogène statistiquement prouvée mais non scientifiquement démontrée. Le mécanisme en est vraisemblablement multiple. Normali-
sation ou atténuation des troubles métaboliques ? Augmen-
tation de la production de pyrophosphaté inorganique ? Amé-
loriation du rapport calcium/magnésium ? Tendance à la
restauration de l’urothélium ? Rôle inhibiteur des oligo-élé-
ments qu’elles contiennent ? Rétéquilibrage neuro-végétatif
par le biais du calcium et du magnésium, ces deux intermé-
diaires chimiques du sympathique et du parasympathique ?
La crénothérapie permet également une éducation du lithia-
sique à boire davantage et d’une manière répartie sur les
24 heures, de se surveiller (mesure du pH, détection des
infections) et de suivre un régime alimentaire adapté. Le sé-
jour dans une station thermale spécialisée dans la lithiase
autorise la réalisation d’un bilan biologique précis permet-
tant une meilleure orientation thérapeutique.

CONCLUSION

A quels lithiasiques s’adresse le thermalisme ?

L’évolution, spontanée de la lithiase est imprévisible. Ac-
tuellement, il est impossible de pronostiquer la lithiase-acci-
dent ou la lithiase-maladie. D’où une enquête alimentaire et
biologique systématique et l’analyse cristallographique du
calcu chaque fois que possible. En cas de premier accident
lithiasique bénin, de simples règles hygiéno-diététiques doi-
vent suffire. Si le premier accident lithiasique est grave ou
s’il est accompagné de perturbations biologiques marquées,
les règles hygiéno-diététiques seront assorties d’un traite-
ment des désordres biochimiques et éventuellement de la cré-
nothérapie. En cas de récidive lithiasique, de lithiase bilaté-
rale, de lithiase polyopérée ou de lithiase sur uropathie mal-
formative, règles hygiéno-diététiques, traitement des désor-
dres biochimiques et cure de diurèse à la station représentent
le maximum de chances pour empêcher une récidive.

La multiplicité des facteurs lithogènes et la pathogénie
mal éclucidée de la lithiase sont responsables d’une attitude
thérapeutique rationnelle imparfaitement définie dans la
tquelle le thermalisme garde toute sa valeur.

REFERENCES

1. Baglin A., Cassan Ph., Fritel D. — Lithiase calcique et hyper-
2. Benevent D., Charnes J.P., Rince M. et coll. — Pathogénie
3. Bernard D., Lagre G. — La lithiase calcique en 1985. Evo-
lution des idées. Acquisitions récentes. 1-Base biochimique.
Méd. Hyg. (Genève), 1985, 43, 594-598.
4. Bourdel Ph., Rychwast A., Rasmussen H. — On the patho-
génie of So-called Idiopathic Hypercalciuria. Am. J. Méd.,
1977, 63, 396-402.
5. Camus J.P., Crouzet J., Prier A. — Étiologies et traitements
de la lithiase calcique. In : Actualités rhumatologiques Gelqy,
métabolisme de l’acide urique dans les lithiases calciques.
In : Symposium sur le traitement préventif des lithiases cal-
7. Fleisch H. — Physiopathologie de la lithiogenèse. In : Sym-
posium sur le traitement préventif des lithiases calciques ré-
8. Harrewyn J.M., Benhamou L. — Diagnostic des maladies du
métabolisme phosphocalcique et du tissu osseux. Documenta-
tion Roussel, 1982.
diagnosto. In : Symposium sur le traitement préventif des
lithiases calciques récidivantes, Paris, 1980, pp. 63-69, well-
come, 1980.
11. Petit C. — Phosphothérapie au long cours dans la lithiase
13. Roveillaud R.J., Doudon M., Protat M.F. — Epidemiologie des
lithiases. In : Symposium sur le traitement préventif des li-
thiases calciques récidivantes, 1980, pp. 1-29. Paris, wellcome,
1983.
as related to water hardness in different geographical regions of

Mise à disposition de l’organisme
du calcium apporté par des eaux du bassin de Vittel
Etude chez la souris

S. DUCOS-FONFREDE, F. CLANET *

(Tours)

Lors d’une étude antérieure, conduite sur l’animal de
laboratoire, nous avons montré l’importance de la minérali-
sation globale de l’eau ingérée en période de croissance (1).
En particulier, les résultats ont mis en exergue l’intérêt de
l’apport calcique, la minéralisation de l’eau intervenant à
la fois quantitativement et qualitativement dans l’accrétion
osseuse du calcium apporté par l’ensemble de l’alimentation.
Les eaux de la station hydrominérale de Vittel, utilisées pour
leur action diurétique d’une part, chélérétique d’autre part,
sont essentiellement employées en cure interne de sorte
qu’elles réalisent un apport calcique non négligeable.

Le travail présenté ici a pour objet l’étude du comportement
du calcium après absorption orale des eaux sulfatées
calciques et magnésiennes des sources Hépar, Grande Source
e Géremay de Vittel par des animaux de laboratoire (souris).
Seules les eaux de Hépar et Grande Source sont dites miné-
rales et nous avons tenté de situer les eaux de Géremay par
rapport à ces eaux minérales. Une méthode originale d’étude
de cinématique sanguine non songlante a permis la réalisation
des expérimentations.

* Laboratoire de Chimie minérale et d’hydrologie, Faculté de
Pharmacie, Université de Tours, 2 bis, bd Tonnellé, 37042 TOURS.

Presses thermo et climatique, 1986, 125, n° 5.
TABLEAU I. — Caractères physico-chimiques majeurs des eaux de Vittel.

<table>
<thead>
<tr>
<th></th>
<th>Hépar</th>
<th>Grande Source</th>
<th>Géremoy</th>
</tr>
</thead>
<tbody>
<tr>
<td>Caractères généraux</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Résidu sec à 180 °C (mg/l)</td>
<td>2 629</td>
<td>904</td>
<td>468</td>
</tr>
<tr>
<td>Résistivité à 20 °C (ohms/cm)</td>
<td>549</td>
<td>1 145</td>
<td>1 601</td>
</tr>
<tr>
<td>pH à 20 °C</td>
<td>7,18</td>
<td>7,16</td>
<td>7,41</td>
</tr>
<tr>
<td>Dureté totale (degré français)</td>
<td>182</td>
<td>84,8</td>
<td>35,2</td>
</tr>
<tr>
<td>Titre alcalimétrique complet (mE/l)</td>
<td>6,23</td>
<td>6,6</td>
<td>4,24</td>
</tr>
</tbody>
</table>

Minéralisation majeure

Anions (mg/l) :
- Bicarbonates | 360,3 | 403 | 259,1 |
- Sulfates | 1 520 | 303 | 160 |
- Chlorures | 9,8 | 7,3 | 4,8 |
- Fluorures | 0,7 | 0,3 | 0,17 |
- Nitrates | 0,0 | 3,0 | 0,3 |
- Silicates | 12,8 | 16,5 | 9 |

Cations (mg/l) :
- Calcium | 544 | 208 | 118,8 |
- Magnésium | 111,8 | 31,1 | 14,6 |
- Sodium | 20,4 | 6,7 | 13,7 |
- Potassium | 3,75 | 1,85 | 2,2 |
- Fer | 0,1 | 0,12 | 0,06 |
- Manganèse | 0,01 | 0,01 | 0,01 |

EAUX EMPLOYÉES

Les caractères physico-chimiques majeurs des eaux considérées sont consignés dans le tableau I et illustrés par la figure 1. On remarque les différences essentiellement quantitatives portant sur le calcium, le magnésium et les sulfates ; l’eau de Géremoy apparaissant comme une dilution au demi de Grande Source.

PROTOCOLE EXPÉRIMENTAL ET MÉTHODOLOGIE

Pour mesurer en continu le comportement sanguin du calcium sur l’animal de laboratoire (souris Swiss), placé dans des conditions physiologiques acceptables, nous avons utilisé une technique décrite dès 1951 par Bonet-Maury.

Le calcium des eaux est marqué par son radio-isotope 46Ca, émetteur β d’énergie 257 keV. L’animal, ayant au préalable jeûné pendant six heures, ingère une quantité connue d’eau marquée puis on mesure la radioactivité sanguine en fonction du temps en réalisant des comptages sur les oreilles de l’animal. En effet c’est un organe aisément accessible, bien vascularisé, peu épais et ne contenant pas d’élément osseux. Nous choisissons la face interne de l’oreille qui présente une disposition anatomique particulièrement favorable, vaisseaux et lacs sanguins n’étant protégés que par une mince couche de cellules épithéliales qui absorbent peu le rayonnement B. Un prélèvement sanguin par ponction intracardiaque au temps t = 5 h (fin de l’expérimentation) permet de relier la radioactivité sanguine mesurée sur l’oreille à la radioactivité sanguine totale.

Nous recueillons séparément urines et fèces pendant toute l’expérimentation (fig. 2). Pour les mesures de radioactivité, nous avons utilisé des compteurs proportionnels à fenêtre mince et à flux gazeux.

Fig. 1. — Minéralisation majeure des eaux étudiées. Les hauteurs correspondant aux différentes espèces ioniques sont proportionnelles aux concentrations exprimées en milliéquivalents.

Fig. 2. — Dispositif de mesure d’activité sanguine sur l’oreille de souris.

1 : compteur à flux gazeux. 2 : oreilles de la souris étalées. 3 : planchette recouverte de plomb supportant l’animal pendant les mesures. 4 : récipient destiné au recueil des urines. 5 : récipient destiné au recueil des fécès. 6 : support mobile.

Presse thermale et climatique, 1988, 125, no 5.
TABLEAU II. — Eliminations urinaire et fécale.

<table>
<thead>
<tr>
<th></th>
<th>Hépar</th>
<th>Grande Source</th>
<th>Gérémoy</th>
</tr>
</thead>
<tbody>
<tr>
<td>Masse d’urine émise (mg)</td>
<td>42</td>
<td>177,6</td>
<td>141,6</td>
</tr>
<tr>
<td>Minéraux ingérés (µg) :</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>— calcium</td>
<td>60,3</td>
<td>39,5</td>
<td>18,6</td>
</tr>
<tr>
<td>— magnésium</td>
<td>12,3</td>
<td>5,7</td>
<td>2,3</td>
</tr>
<tr>
<td>— sulfates</td>
<td>183,3</td>
<td>100,5</td>
<td>24,8</td>
</tr>
<tr>
<td>Calcul fécal (%) (pourcentage de l’activité ingérée)</td>
<td>25,03</td>
<td>6,55</td>
<td>5,33</td>
</tr>
</tbody>
</table>

RÉSULTATS EXPÉRIMENTAUX ET INTERPRÉTATION

Nous avons donc mesuré sur trois groupes de six animaux, d’une part l’élimination urinaire et fécale, d’autre part l’absorption et le transit sanguin du calcium en fonction du temps.

Eliminations urinaire et fécale (tableau II)

Les mesures d’élimination urinaire se bornent à comparer les masses d’urines émises car l’élimination du calcium par les voies urinaires est très faible. Figurent également dans le tableau II les teneurs en espèces minérales majeures ingérées.

On peut alors noter que l’eau la plus minéralisée (Hépar) est responsable de l’élimination la plus faible ; en effet et Morris [2] l’a montré, les sulfates sont peu absorbés par la muqueuse digestive car la capacité des processus de transport spécialisés est faible ; en outre le sulfate de magnésium, essentiellement, induit une sécrétion d’eau dans la lumière intestinale en provoquant une augmentation de la pression osmotique ; cette sécrétion d’eau provoquant à son tour une réabsorption d’eau au niveau rénal pour assurer, l’état d’équilibre des compartiments liquidiens de l’organisme : ceci étant à l’origine du faible volume d’urine émise. On remarque également que le volume d’urine le plus important est obtenu avec l’eau de Grande Source dont la réputation diurétique n’est plus à faire, l’eau de la source Gérémoy induisant une diurèse très proche.

L’élimination fécale mesurée par le radiocalcium éliminé est très différente pour le lot d’animaux ayant ingéré l’eau de Hépar de celle que montrent les lots ayant ingéré Grande Source ou Gérémoy. Or, le calcium fécal a deux origines (Aubert et Milhaud) après avoir été métabolisé :
- calcium non absorbé, directement éliminé ;
- calcium endogène, sécrété dans la lumière intestinale.

Or, comme le métabolisme du calcium fait intervenir l’os (99 p. cent du calcium de l’organisme) au niveau duquel les échanges sont lents, l’élimination calcique fécale que nous avons déterminée est donc constituée de calcium non absorbé. L’importance de l’élimination observée avec l’eau de la source Hépar en rend compte, car cette eau réalise un apport important au niveau intestinal provoquant la saturation des sites d’absorption ; de plus, simultanément sont ingérés des sulfates et du magnésium cathartiques. L’activité éliminée par les lots d’animaux ayant ingéré l’eau de Grande Source et de Gérémoy est sensiblement identique dans les deux cas.

Fig. 3. — Courbes de cinétique sanguine du calcium (échelle nu mérite).

Transit sanguin du calcium

Les mesures sont réalisées pendant cinq heures, à raison de comptages de trois minutes à intervalles d’une minute. Les nombreux points expérimentaux obtenus ont permis le tracé des courbes cinétiques de la figure 3 (courbes en échelle numérique). Considérons qu’il est observé trois processus exponentiels consécutifs, la cinétique globale est de la forme :

\[C = A e^{-\alpha t} - B e^{-\beta t} + D e^{-\gamma t} \]

α, β et γ étant les constantes de vitesse de chacune des étapes.

Ces étapes sont :
- une phase d’absorption correspondant à l’augmentation de l’activité sanguine,
MÉCANISMES ET EFFETS DE LA CURE DE DIURÈSE

Fig. 4. - Courbes cinétiques en échelle semi-logarithmique.

TABLEAU III. — Cinétique du transit sanguin du calcium.

<table>
<thead>
<tr>
<th></th>
<th>Hépar</th>
<th>Grande Source</th>
<th>Gérémoy</th>
</tr>
</thead>
<tbody>
<tr>
<td>T_{max}</td>
<td>91 min</td>
<td>64 min</td>
<td>90 min</td>
</tr>
<tr>
<td>AUC_{0-T_{max}}</td>
<td>527 cpm/min</td>
<td>125 cpm/min</td>
<td>369 cpm/min</td>
</tr>
<tr>
<td>Constantes de vitesse :</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>absorption</td>
<td>8.4.10^{-2}</td>
<td>9.10^{-2}</td>
<td>16.10^{-2}</td>
</tr>
<tr>
<td>assimilation</td>
<td>4.10^{-4}</td>
<td>4.4.10^{-4}</td>
<td>8.10^{-4}</td>
</tr>
<tr>
<td>élimination</td>
<td>1.5.10^{-4}</td>
<td>6.10^{-4}</td>
<td>4.10^{-4}</td>
</tr>
</tbody>
</table>

— une phase d’assimilation,
— une phase d’élimination.

Pendant ces deux dernières phases, le calcium se distribue aux organes cibles et s’élimine de la circulation sanguine. Aux plans physiologique et pharmacocinétique, ces trois phases coexistent, le processus qui prédomine imposant l’allure générale du phénomène.

Pour fonder notre comparaison, outre les constantes de vitesse des trois étapes, nous avons déterminé pour chaque lot, l’instant où l’activité sanguine atteint son maximum, dénommé T_{max}, ainsi que l’activité ayant transité dans le sang entre le moment t=0 de l’ingestion et le T_{max}, que figure l’aire sous la courbe et que l’on dénomme AUC_{0-T_{max}}.

La comparaison de ces différents paramètres permet d’apprécier les différences entre les trois eaux étudiées. Les résultats obtenus ainsi que les courbes cinétiques en échelle semi-logarithmique sont rapportés sur la figure 4 et dans le tableau III.

C’est ainsi que T_{max} et la constante de vitesse d’absorption renseignent sur l’étape d’absorption. T_{max} diminue lorsque la minéralisation ingérée augmente, la constante de vitesse d’absorption augmentant parallèlement ; l’absorption s’effectue d’autant plus rapidement que l’apport minéral, calcique et magnésien essentiellement est plus faible, et ceci en raison des mécanismes de transport actif qui intervienient.

La valeur obtenue pour AUC_{0-T_{max}} n’évolue pas parallèlement à la minéralisation, la plus faible valeur est obtenue avec l’eau de Grande Source indiquant que l’absorption, bien que ne dominant plus, continue de se réaliser après le T_{max}. A l’inverse, AUC_{0-T_{max}} est importante pour les deux autres lots d’animaux ; en effet, avec l’eau de Hépar car le T_{max} est grand, et avec l’eau de Gérémoy car la constante de vitesse d’absorption est importante.

La distribution du calcium réalisée par les deux étapes assimilation et élimination est appréciée par la comparaison des constantes de vitesse de ces étapes. Ces valeurs indiquent que la distribution s’effectue d’autant plus lentement que la minéralisation ingérée est plus importante.

CONCLUSION

En tenant compte des limites d’appréciation que permet notre expérimentation, nous remarquons que l’élimination obtenue avec l’eau de Grande Source et de Gérémoy est comparable, tant en ce qui concerne la diurèse que l’élimination calcique fécale.

La mise à disposition du calcium apporté par ces trois eaux montre des différences remarquables ; avec Hépar, l’absorption est importante et les différentes étapes sont lentes induisant une concentration en calcium sanguin importante et durable ; avec Grande Source, l’absorption est peu importante mais les deux premières étapes se réalisant lentement, le taux de calcium sanguin est peu important mais relativement durable ; avec Gérémoy, l’absorption est importante mais les étapes se réalisant rapidement, le calcium sanguin est important mais pendant un temps très court.

REFERENCES

Presse thermo et climatique, 1988, 125, n° 5.
Métabolisme phosphocalcique et cure thermale à Bourbonne-les-Bains

M. PICARD *, B. ALLARY *

(Bourbonne-les-Bains)

Les vertus bénéfiques de la crénothérapie à Bourbonne-les-Bains ont été établies de longue date dans le domaine des affections rhumatismales.

Il est apparu rapidement qu'elle avait aussi une action spécifique au niveau de l'os. Les observations cliniques et radiologiques ont montré une accélération de la consolidation osseuse au dé... des fractures ; des études expérimentales chez le rat ont mis en évidence l'effet préventif de la cure sur le rachitisme des animaux soumis à un régime carencé ; on note par ailleurs une réduction très nette de la durée d'évolution des algodystrophies.

Les militaires se sont intéressés d'ailleurs très tôt à Bourbonne-les-Bains pour soigner les blessures de guerre, puisque c'est en 1702 que fut construit le premier hôpital thermal et militaire.

Il nous a donc paru intéressant d'étayer ces constatations cliniques et radiologiques par des données biologiques concernant le métabolisme phosphocalcique durant la cure à Bourbonne.

MÉTHODOLOGIE

Nous avons effectué des dosages de la calcémie, phosphorémie, des phosphatas... de la thyroxinémie, chez 24 femmes avant la cure et au dixième jour de celle-ci.

La moyenne d'âge était de 60 ans avec des extrêmes de 38 et 75 ans.

Les curistes présentaient essentiellement une pathologie rhumatismale dégénérative, arthrose rachidienne, coxarthrose, gonarthrose et périradiotite scapulo-humérale.

Nous avons éliminé les sujets présentant une maladie de Paget, une hyperparathyroïdie, des fractures osseuses récentes, ou ayant été opéré récemment d'une tumeur. Aucun patient n'était plus porteur d'affection endocrinienne ou rénale susceptible de perturber les résultats.

Comptes tenu de l'âge moyen de nos curistes, il existait bien sûr un certain nombre de patients présentant des signes radiologiques d'ostéoporose.

Aucun des sujets retenus n'était non plus ouvert à un traitement susceptible de modifier le métabolisme phosphocalcique.

Le traitement a toujours comporté bains aérogazeux, de 20 minutes à 37 degrés, une douche thermale de 3 minutes à 38 degrés, l'émanation durant 20 minutes et ceci un jour sur deux avec le lendemain des applications de boue thermale pendant 20 minutes, une douche thermale de 3 minutes et des massages sous l'eau.

Le dosage de la calcémie a été évalué par fluorimétrie avec l'appareil Calcette ; la phosphorémie par méthode colorimétrique avec le réactif de Misson ; les phosphatas... de la thyroxinémie qui ne sont que des facteurs essentiels de l'accrétion osseuse.

Les statistiques ont été réalisées avec le test t de Student.

RÉSULTATS

Calcémie

A J0, la moyenne est de 93,54 ± 3,3 et à J10 de 94,87 ± 2,99 (t = 1,44). II existe donc une augmentation discrète mais significative de la calcémie. Cette augmentation peut paraître faible mais, si l'on regarde les choses de plus près, on constate que ces variations diffèrent selon que la calcémie était basse ou haute initialement. On assiste, en effet, à un phénomène très curieux mais qui confirme ce que différents cliniciens avaient déjà pressenti : l'eau thermale a une véritable action régulatrice sur le métabolisme du calcium.

En effet, dans le sous-groupe des curistes qui présentaient une calcémie plutôt basse, inférieure à 95 mg/l à J0 (n = 14), la calcémie passe en moyenne de 91,36 à 94,56 (t = 4,06, différence très significative) et dans le sous-groupe où elle était supérieure à 95 mg/l à J0 (n = 10) la moyenne baisse très discrètement : elle passe de 96,6 à J0 à 95,3 à J10 (différence non significative).

On peut donc conclure que la calcémie augmente avec la cure, et que cette augmentation est très significative si la calcémie est plutôt basse initialement.

La différence apparaît alors tout à fait appreciable car l'on sait que l'homéostasie calcique est particulièrement précise, limitant normalement les variations de la calcémie.

Phosphorémie

A J0 la moyenne est 34,7 ± 3,5 et à J10 de 37,79 ± 1,46. Cette augmentation de 8,7 p. cent est très significative (t = 3,84).

Comme pour la calcémie on a noté aussi une certaine normalisation des paramètres.

Cette augmentation concomitante de la calcémie et de la phosphorémie est assez surprenante et intéressante car on sait que ces paramètres évoluent habituellement en sens inverse dans l'organisme.

Cette constatation est d'ailleurs confirmée par le fait que la moyenne des produits phosphocalciques chez chaque curiste est augmentée de manière très significative : elle passe de 3 251 à 3 591, ce qui fait une augmentation de 10,5 p. cent. Ces constatations biologiques ont donc vraisemblablement une incidence thérapeutique intéressante au niveau de l'os puisque le produit phosphocalcique est un des facteurs essentiels de l'accrétion osseuse.

Nous n'avons pas retrouvé de différence significative en ce qui concerne les phosphatas... alcalines ainsi que la calcitonine avant et après la cure.

Les résultats obtenus chez les patients présentant radiochimiquement une ostéoporose nous ont paru aussi de quelques intérêts, bien qu'ils ne puissent faire l'objet d'une conclusion car comportant un nombre insuffisant de malades (9 patients) et surtout parce que l'évaluation radiologique de l'ostéoporose sans tassements vertébraux est sujette à caution.
Néanmoins, il est étonnant de constater une variation plus nette de la calcémie dans ce sous-groupe : la moyenne de la calcémie passe de 93,2 à 96,2 chez les ostéoporotiques alors qu’elle passe de 93,7 à 94,07 chez les autres patients.

La phosphorémie varie de 35,7 à 37,89 chez les ostéoporotiques et de 34,13 à 37,73 chez les autres patients.

Les variations des phosphatasies alcalines n’ont pas montré de différence dans les deux groupes mais l’on constate cependant des valeurs plus élevées à J0 et à J10 dans le groupe des ostéoporotiques (36,2 à J0 pour ce groupe, contre 28,55 chez les autres curistes).

SIGNIFICATION DES RÉSULTATS

Nous nous garderons bien de formuler une quelconque conclusion sur le mode d’action au niveau de l’os du métabolisme phosphocalcique lors de la cure thermale à Bour- bonne-les-Bains, au vu de ces quelques constatations biologiques.

Les possibilités techniques et financières de cette étude ne nous ayant malheureusement pas permis une approche plus exhaustive de la question ; il aurait en effet été intéressant de doser la parathormone, la vitamine D et les paramètres urinaires du métabolisme phosphocalcique.

Tout au plus peut-on évoquer quelques hypothèses physiopathogéniques.

Il semble que l’on puisse évoquer l’action de la calcitonine et sans doute aussi celle de la parathormone qui sont particulièrement hypophosphorémiantes.

Il serait donc tentant de faire intervenir la vitamine D pour expliquer l’élévation concomitante du calcium et du phosphore. Cette hypothèse permettrait aussi d’expliquer le rôle préventif de la cure thermale de Bouronne-les-Bains sur le rachitisme des rats soumis à un régime carencé. Des dosages de vitamine D sont donc nécessaires pour essayer d’étayer cette hypothèse.

Spunti emergenti da un’esperienza su oltre 10 000 prove di diuresi da carico idrico nel ratto albino

P.C. FEDERICI, C. MARCHESI, A. PASQUALIS *

(Parme, Italie)

Nell’attività sperimentale della nostra Scuola possiamo contare su oltre 10 000 prove di diuresi da carico idrico nel ratto albino, delle quali circa 5 000 eseguite nel periodo novembre 1985-luglio 1986. Le modalità di preparazione, degli animali, le technique di realizzazione e per la raccolta e l’analisi statistica dei reperti, sono ampiamente descritte in altre note e potranno comunque essere precisate in dettaglio agli interessati in corso della discussione.

Sintetizziamo qui alcune considerazioni alle quali, nella nostra attività sperimentale, ci ha consentito di pervenire:

— In idrologia sperimentale i confronti a esse dette “prove in bianco”, vanno sempre eseguiti con una buona acqua distillata possibilmente prodotta dall’industria farmaceutica in confezione commerciale (bottiglie per uso inettabile), le cui caratteristiche devono essere di volta in volta controllate in quanto, a volte, è possibile avere, pure con questi prodotti, delle sorprese, p.e.s.: cospicue variazioni del pH, che devono essere corrette.

— I controlli con acque di acquedotto “acqua fontis” sono sconsigliabili, sia perché non ripetibili da altri ricercatori in località diverse, sia perché, a volte, è possibile avere acque di acquedotto con proprietà biologiche particolari che maschererebbero i risultati attuati con le acque mineralizzate sottoposte a sperimentazione.

— Per prove di diuresi da carico, con acque mineralizzate nel ratto albino, è bene impiegare carichi modesti; noi effettuiamo carichi di 25 ml/kg, in quanto meglio tollerati anche per lunghe e ripetute sperimentazioni.

— L’aggiunta di CO₂ all’acqua non sembra capace, da sola, di influenzare la risposta diuretica; infatti l’acqua distillata aggiugonata a CO₂ dà rapidamente risposte di diuresi inferiori all’acqua distillata semplice; alcune acque mineralizzate sembrano invece avvantaggiate dall’aggiunta di CO₂, specialmente nelle prove da carico idrico in animali non digiuni.

— Temperature estreme; troppo basse (~5 °C) o troppo alte (~45 °C) non favoriscono la diuresi da carico rispetto alla temperature ambiente (~20 °C), invece una temperatura "fisiologica" (~37 °C) sembra incrementare notevolmente la risposta diuretica quanto a rapidità di eliminazione ed abbondanza.

— La risposta diuretica si incrementa nell’animale con l’allenamento, per cui abitualmente stabiliti con acque diuretiche rispondono più vivacemente alle prove da carico, rispetto agli animali stabiliti con acqua comune, sia quando sono caricati con l’acqua diuretica che quando sono caricati con distillata.

— La condizione di “preparazione” che dà risposte al carico idrico più pronte ed abbondanti sembra essere quella del “digiuno solido” (animali non mangiano ma sono normalmente abberverati nelle 24 ore precedenti la prova), seguito dal “digiuno completo”, animali “non digiuni” ed infine da quelli a “digiuno idrico” che sono i più disidratati.

— La composizione dell’acqua pare influenzare la diuresi, nel senso che risposte favorevoli, quanto a sollecitudine ed abbondanza, sono più frequenti con acque bicarbonatate, bicarbonato-solfate e solfato-bicarbonatate; meno con acque...
Lithiases rénales et cure de diurèse

Modifications des mécanismes d’acidification de l’urine

Résumé

N. de TALANCÉ *, B. SIOLY **, M. BOULANGÉ ***
(Vandœuvre-les-Nancy)

La lithiase rénale, maladie qui touche au moins un million de personnes en France, est la résultante de l’action de plusieurs facteurs de lithogénèse qui, en particulier des modifications du pH urinaire. Quarante-cinq patients volontaires ayant un passé lithiasique ancien, ainsi que 9 sujets témoins ont accepté de subir un contrôle sanguin et urinaire lors de leur cure de diurèse, la 1ère journée, le 10ème jour et le 20ème jour. L’équilibre acido-basique urinaire a été apprécié par la mesure du pH et du débit des ions hydrogène (H+).

La quantité moyenne d’eau de Vittel Grande-Source buée (eau sulfatée calcique et magnésienne) a été de 492 à 684 ml en 2 heures, ceci permettant d’obtenir des diurèses moyennes de 5,45 ml/min.

RÉSULTATS
(Tous types de lithiases confondues)

Les résultats sont rapportés dans le tableau I.

Deux heures après la prise d’eau de Vittel, il existe une alcalinisation des urines liée à l’apport de bicarbonates

<table>
<thead>
<tr>
<th>TABLEAU I. — Tous types de lithiases confondues.</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
</tr>
<tr>
<td>pH</td>
</tr>
<tr>
<td>Acidité titrable (µmol/min)</td>
</tr>
<tr>
<td>Débit des ions H+ (µmol/min)</td>
</tr>
<tr>
<td>HCO3- (µmol/min)</td>
</tr>
</tbody>
</table>

(0,402 g/l), une diminution de l’acidité titrable, mais le débit des ions H+ n’est pratiquement pas modifié, ceci grâce à une augmentation de l’élimination des ions ammonium (NH4+).

CONCLUSION

Lors de la cure de diurèse au moyen des eaux sulfatées calciques, magnésiennes, on observe une alcalinisation des urines dans les deux heures qui suivent l’ingestion d’eau, ceci d’une manière invariable tout au long des 20 jours de cure. Si l’alcalinisation des urines est souhaitable en cas de lithiase unique pure, celle-ci ne doit cependant pas être poursuivie, car elle comporte ses propres risques de précipitation calcique.
Lithiases rénales et cure de diurèse
Action sur le métabolisme phosphocalcique
et les hormones régulatrices

N. de TALANCÉ *, J. THOMAS **,
C. BURLET *, M. BOULANGÉ *
(Nancy)

La lithiase rénale, maladie rencontrée depuis l’Antiquité,
est une affection qui a connu au cours du XXᵉ siècle un
rebond extraordinaire dans les pays à haut niveau de vie.
C’est en outre une pathologie dont l’évolivité et la
récidive sont éminemment variables d’un sujet à l’autre [1].
Les moyens thérapeutiques sont variés mais depuis l’Anti-
quité la crétoneuraphie occupe une place intéressante, sur-
tout quant à la prévention des récidives par le biais de la
cure de diurèse qui entraîne en effet une diminution de la
concentration des substances lithogènes, mais aussi un
effet de chasse sur les microcristaux. Les stations où l’on
soigne la lithiase rénale sont Vittel et Contrexéville dans
les Vosges, Evian dans les Alpes et Capvern dans les
Pyrénées. Pratiquement toutes les eaux sont de type sul-
faté, calciques et magnésiennes, sauf Evian où elles sont
oligométalliques. Pour certains auteurs dont Ulmann [8],
la présence en grande quantité de calcium dans les eaux
des stations vosgiennes contre-indique leur emploi en par-
ticulier lors de lithiases oxalocalciques et calciques. Nous
avons voulu montrer, par cette étude, l’incidence réelle du
calcium contenu dans les eaux de Vittel Grande-Source
de durée de diurèse chez des patients souffrant de
diverses lithiases.

MATÉRIEL ET MÉTHODES

Patients

45 patients lithiases anciens, sans insuffisance rénale
ont participé à l’étude ainsi que 9 sujets « témoins »,
sans antécédents lithiases (tableau I).

Protocole expérimental

L’étude s’est déroulée sur une période de 20 jours. Les
prélèvements sanguins et le recueil urinaire ont été réali-
sés les premier, dixième et vingtième jours de la cure de
diurèse. Le patient ayant vidé sa vessie à 8 heures, absorbe
deux heures entre 500 ml et 700 ml d’eau de Vittel
Grande-Source (tableau II) (soit 99 à 138 mg de calcium).
Le recueil des urines se fait durant les deux heures suivantes
(10 h et 12 h). Un prélèvement sanguin est effectué à
12 h en vue du dosage de la calcémie, phosphorémie,
uricémie, osmolalité plasmatique, ainsi que du taux de
parathormone (PTH) et de thyrocalcitonine (CTH). Un
deuxième recueil urinaire portant sur les urines de la

* Laboratoire d’Explorations Fonctionnelles Rénales et Métabo-
liques, CHU NANCY BRABOIS.
** Institut d’Hydrologie et de Climatologie.

nuit (20 h – 8 h) est effectué afin de pouvoir comparer
les effets d’une cure de diurèse et d’une restriction hydrique.

Méthodes de dosage

— Magnésium, phosphates et acide urique sont dosés
par colorimétrie sur spectromètre Eppendorf 6121.
— La créatinine est dosée en cinétique lors de la
réaction colorimétrique de Jaffé, sur appareil Technam.
— Le calcium est analysé en complexométrie sur
l’appareil Corning 940.
— Les hormones PTH et CTH sont analysées par techni-
que radio-immunologique en utilisant, pour la PTH deux
anticorps reconnaissant l’un le fragment C-Terminal de
la molécule (53-84) et l’autre le fragment intermédiaire
(44-68).

Analyse statistique des résultats

Etude des variances multiples avec séries appariées.

TABLEAU I. — Caractéristiques des patients retenus pour la cure
de diurèse.

<table>
<thead>
<tr>
<th>Lithiase phosphocalcique</th>
<th>Lithiase oxalique</th>
<th>Lithiase urique</th>
<th>Témoins</th>
</tr>
</thead>
<tbody>
<tr>
<td>Nombre</td>
<td>6</td>
<td>29</td>
<td>10</td>
</tr>
<tr>
<td>Sexe</td>
<td>2 hommes</td>
<td>18 hommes</td>
<td>7 hommes</td>
</tr>
<tr>
<td>Age</td>
<td>45-70 ans</td>
<td>40-68 ans</td>
<td>50-72 ans</td>
</tr>
</tbody>
</table>

TABLEAU II. — Caractéristiques physicochimiques de l’eau de
Vittel Grande-Source.

<table>
<thead>
<tr>
<th>Cations</th>
<th>Anions</th>
</tr>
</thead>
<tbody>
<tr>
<td>Potassium K⁺</td>
<td>0,02 g/l</td>
</tr>
<tr>
<td>Sodium Na⁺</td>
<td>0,006 g/l</td>
</tr>
<tr>
<td>Ammonium NH₄⁺</td>
<td>absence</td>
</tr>
<tr>
<td>Calcium Ca²⁺</td>
<td>0,202 g/l</td>
</tr>
<tr>
<td>Magnésium Mg²⁺</td>
<td>0,036 g/l</td>
</tr>
<tr>
<td>Ferrum Fe²⁺</td>
<td>0,00002 g/l</td>
</tr>
<tr>
<td>Manganèse Mn²⁺</td>
<td>0,000002 g/l</td>
</tr>
<tr>
<td>Aluminium Al³⁺</td>
<td>0,000013 g/l</td>
</tr>
</tbody>
</table>

Presse thermale et climatique, 1988, 125, n° 5.
TABLEAU III. — Evolution des paramètres plasmatiques au cours de la cure de diurèse.

<table>
<thead>
<tr>
<th>Lithiase urique n=10</th>
<th>Lithiase oxalique n=29</th>
<th>Lithiase phosphocalcique n=7</th>
</tr>
</thead>
<tbody>
<tr>
<td>1er jour</td>
<td>10° jour</td>
<td>20° jour</td>
</tr>
<tr>
<td>Calcémie (mM/l)</td>
<td>2,21 ± 0,07</td>
<td>2,25 ± 0,05</td>
</tr>
<tr>
<td>Phosphorémie (mM/l)</td>
<td>0,71 ± 0,11</td>
<td>0,76 ± 0,12</td>
</tr>
<tr>
<td>Uricémie (mM/l)</td>
<td>0,42 ± 0,07</td>
<td>0,39 ± 0,05</td>
</tr>
<tr>
<td>PTH 44-88 (ng/l)</td>
<td>0,32 ± 0,13</td>
<td>0,29 ± 0,13</td>
</tr>
<tr>
<td>PTH 53-84 (ng/l)</td>
<td>0,31 ± 0,18</td>
<td>0,14 ± 0,04</td>
</tr>
<tr>
<td>CTH (pg/ml)</td>
<td>3,00 ± 0,48</td>
<td>3,10 ± 0,34</td>
</tr>
</tbody>
</table>

Fig. 1. — Osmolalité urinaire durant la cure.

Fig. 2. — Ca/Cr urinaire durant la cure.

Fig. 3. — Excération urinaire durant la cure.

RÉSULTATS

— Les paramètres plasmatiques ne varient pas tout au long de la cure (tableau III).

— Les facteurs lithogènes sont dilués (fig. 1).

— Le rapport calcium/ créatinine urinaire (UCa/UCr) est constamment élevé durant la nuit quel que soit le type de lithiase. Il tend à se rapprocher des valeurs physiologiques après prise de boisson. Cet effet est surtout net dans le cas de la lithiase urique (fig. 2). Le rapport magnésium/ calcium (UMg/UCa) reste faible.

— L’excération urique par contre augmente progressivement durant les 20 jours de la cure. Cet effet est net en cours de lithiase urique (fig. 3). Par contre, les excrétions calciques et phosphatées ne subissent aucune variation.

Les sujets témoins présentent la même évolution que les patients lithiasiques. Le rapport UCa/U Cr qui était normal au début de la cure reste stable ; par contre l’excération urique augmente progressivement mais d’une manière moins nette que dans la lithiase urique.

DISCUSSION

Ca/Cr qui tend à se normaliser, surtout dans la lithiase urique. Ceci pourrait être un facteur important dans la prévention de récidives. D’ailleurs François [4] a montré que la cure de diurèse, associée à une alimentation pauvre en purines et en acide oxalique, diminuait de façon importante les risques de récidives, quel que soit le type de lithiase. Ce moyen thérapeutique se révélait en outre supérieur ou égal aux divers traitements médicamenteux [6].

Enfin, la dilution des facteurs lithogènes est pratiquement réalisée lors de la cure de diurèse. En fin de cure, nous constatons que l’osmolalité des urines de la nuit baisse quel que soit le type de lithiase. L’éducation des malades a été réalisée tout au long des 20 jours de la cure ; les patients ont appris à boire et il semblerait qu’ils aient une prise nocturne d’eau.

RÉFÉRENCES

Presse thermale et climatique, 1988, 125, n° 5.
Session 2

La crénothérapie de la spondylarthrite ankylosante et de ses relations avec la médecine thermale

Résumé

V. OTT
(Bad Nauheim, Allemagne)

Après une rapide évocation de l'histoire de la spondylarthrite ankylosante (Sp.a.), l'importance primordiale de la médecine thermale et des stations thermales dans l'exploration et le traitement de cette maladie est exposée. Faisant suite à une période de thérapeutique purement empirique, la crénothérapie est mentionnée dès les premières descriptions scientifiques de la Sp.a. Au XXe siècle, les stations thermales d'Europe, lieux de pèlerinage des malades souffrant de Sp.a., deviennent des centres de recherche, dont les protagonistes seront honorés dans le rapport. Ainsi à Buxton et Bath (Grande-Bretagne), la nosologie et la thérapeutique sont explorées ; à Aachen (Allemagne), on découvre la position-clef de la sacro-ilipite dans le diagnostic radiologique de la Sp.a. précoce. Depuis Aix-les-Bains (France), cette découverte est répandue dans le monde occidental, et dans cette même station, une monographie magistrale est élaborée. La clinique et la radiologie de la Sp.a. seront également systématisées à Bad Ragaz (Suisse), puis à Bad Nauheim (Allemagne) où, comme à Aix-les-Bains, la spondyllose hyperostotique (ou l'hyperostose ankylosante vertébrale) est différenciée de la Sp.a.

D'autres stations thermales de l'Europe traitent les problèmes de la maladie. Le traitement au Radon hyperthermal est développé à Bas Gastein (Autriche). A Piest'any (Tchécoslovaquie), les syndromes vertébraux métaboliques apparentés sont étudiés.

Même la recherche anatomopathologique exercée dans certaines stations thermales est fructueuse ; ainsi à Wiesbaden, la différenciation entre Sp.a. et polyarthrite rhumatoïde est mise au point.

Actuellement, les progrès théoriques et cliniques sont moins liés à la médecine thermale ; mais les stations ont renforcé leur fonction de centres de rééducation et de planification thérapeutique ; de même elles contribuent à faire avancer la recherche comparative de thérapeutique et de réhabilitation. Les cliniques thermales jouent en outre un rôle dans la recherche de base.

Enfin les associations de malades souffrant de Sp.a., dont la première fut fondée à Bath et suivie de beaucoup d'autres, représentent une autre activité moderne du thermalisme dans le domaine de la spondylarthrite ankylosante.

* Clinique de Médecine Physique, Balnéologie et Rhumatologie, Université de Glessen, BAD NAUHEIM (Allemagne).

Presse thermale et climatique, 1988, 125, no 5.
Aspects nosologiques de la spondylarthrite ankylosante

Résumé

A. GAUCHER

(Nancy)

Les lésions initiales de la spondylarthrite ankylosante sont centrées sur les enthèses qui sont les zones d’ancrage dans l’os, des tendons, des capsules et des ligaments. Ce sont ces inflammations souvent profondes, qui sont la cause des douleurs ressenties par le malade et qui suscitent des contractures musculaires réflexes.

D’abord responsables de destructions osseuses corticales localisées, les enthèses guérissent lentement, en quelques années, en laissant derrière elles des ossifications cicatricielles qui viennent limiter la souplesse de la colonne vertébrale et la mobilité de la cage thoracique et de certaines articulations des membres.

Les syndesmophytes résultent d’authentiques enthèses des fibres périphériques de l’anneau fibreux discale dont la phase érosive est l’ostéite de Romanus. Ce sont les ossifications des attaches capsulo-ligamentaires, faisant suite à leur inflammation, qui entraînent la synostose des articulations cartilagineuses telles l’articulation manubrio-sternale et la symphyse pubienne et des articulations synoviales, articulations sacro-iliaques et interapophysaires postérieures en particulier.

La spondylarthrite ankylosante s’oppose donc fondamentalement à la polyarthrite rhumatoïde qui est une polyarthritis destructrice.

Si l’ankylose peut difficilement être évitée dans la spondylarthrite commune, elle doit se faire en bonne position grâce à la crénotherapie et à la rééducation. Quant aux anti-inflammatoires non stéroïdiens, s’ils apportent un soulagement indéniable, ils ne semblent pas pouvoir modifier le cours de la maladie.

Spondylarthrite ankylosante d’origine traumatique

J. GOUGEON *

(Reims)

Qu’un rhumatisme inflammatoire, polyarthrite rhumatoïde ou pelvispondylite rhumatisma, puisse reconnaître comme cause principale ou déclenchant un traumatisme a été discuté depuis fort longtemps et en tout cas depuis la deuxième Guerre Mondiale. En 1947, de Sèze estimait à 8 p. cent le nombre des spondylarthrites succédant à un traumatisme.

Depuis lors, des publications espaçées [4, 12] sont venues sur le sujet, apportant des observations plus ou moins convaincantes mais leurs auteurs rappellent généralement avec prudence que la spondylarthrite est certainement une maladie multifactorielle et que le traumatisme peut n’être que l’un de ces facteurs, même s’il est apparemment le facteur décisif.

Depuis cette époque, on a beaucoup appris, en particulier l’existence d’un terrain génétiquement prédisposé, marqué par l’antigène HLA B 27, et le rôle de cofacteur joué par des facteurs d’environnement tels que des infections ou des maladies associées. À la lumière de ces connaissances nouvelles, que reste-t-il de la spondylarthrite ankylosante post-traumatique?

On voit bien combien il est difficile pour ne pas dire impossible de démontrer scientifiquement qu’un traumatisme puisse être le facteur étiologique essentiel d’une spondylarthrite. Tout récemment (1985) des auteurs anglais, Jacoby et coll. [10], ayant eux aussi rencontré quelques spondylarthrites à début apparemment traumatique, ont tenté une

* CHU, 51005 REIMS CEDEX.

Presse thermale et climatique, 1968, 125, n° 5.
approche plus scientifique en soumettant à un questionnaire d'une part une série de 113 spondylarthrites (répondant aux critères de New York) et d'autre part une série de 51 lombalgies banales c'est-à-dire d'origine dégénérative. Les résultats de cette enquête sont assez curieux.

Il apparaît qu'il n'y a pas de différence significative entre le pourcentage de cas de spondylarthrite d'une part, de lombalgie commune d'autre part dont le début clinique succède de manière nette et immédiate à un traumatisme.

Parmi les 113 spondylarthrites de cette série, 9 sont apparemment post-traumatiques, mais (et l'on retrouve presque exactement les chiffres de Douy) 5 n'avaient aucun symptôme connu avant le traumatisme alors que 4 étaient, avant celui-ci, porteurs de stigmates radiologiques, certains de spondylarthrite, en l'absence de toute symptomatologie clinique.

La conclusion des auteurs est que le traumatisme n'est qu'apparemment responsable de la spondylarthrite et que son rôle est essentiellement de révéler celle-ci. En outre, ils fournissent une explication assez séduisante de ce rôle révélateur : les sujets victimes d'un traumatisme et spécialement d'un traumatisme rachidien important sont mis au repos complet. Or ce dernier, notoirement, n'est pas favorable aux spondylarthrites. L'interrogatoire auquel ont été soumis les spondylarthrites d'une part, les lombalgies communs d'autre part est tout à fait révélateur à cet égard. Les spondylarthrites ont en effet indiqué en tête des moyens ou circonstances qui diminuent leurs douleurs le mouvement (exercice). Cette réponse est donnée par 43 p. cent des spondylarthrites contre 4 p. cent des lombalgies banaux. Les réponses restent les mêmes quand la question est posée différemment. Le mouvement aggrave la douleur chez 12 p. cent des spondylarthrites, chez 41 p. cent des lombalgies banaux, améliore la douleur chez 75 p. cent des spondylarthrites contre 29 p. cent des lombalgies banaux. Quant au repos, il aggrave 50 p. cent des spondylarthrites mais 25 p. cent seulement des lombalgies banaux, alors qu'il améliore seulement 43 p. cent des spondylarthrites contre 65 p. cent des lombalgies banaux. Pour toutes ces confrontations, le résultat est très hautement significatif avec un p < 0,001.

Reste le problème médico-légal.

Doury est favorable à la prise en charge de la spondylarthrite en milieu militaire, certes dans les suites d'un syndrome de Fiessinger-Leroy-Reiter mais aussi en cas de traumatisme précis comme ce qu'on vient d'évoquer.

Jacoby et ses collaborateurs anglais admettent eux-mêmes, compte tenu des faits cliniques rapportés et du rôle déclenchant ou aggravant, même chez les malades porteurs auparavant d'une affection latente, qu'une certaine « réparation » peut être légalement justifiée.

Les lésions traumatiques du rachis spondylarthritique sont très particulières et très différentes de celles du rachis sain ; leurs conséquences sont aussi souvent beaucoup plus graves.

Ceci est aisément explicable par les caractères propres du rachis, au moins aux stades évolués de la spondylarthrite, là où existe un énraîssissement complet par les ossifications intervertébrales à la fois de la colonne des corps vertébraux, et de celles des arcs postérieurs.

Le rachis ainsi ankylosé est remarquablement fragilisé par cette rigidité même, en raison de laquelle il se comporte comme la diaphyse d'un os long. De surcroît le rachis spondylarthritique à ce stade tardif est habituellement très déminéralisé et donc fragile. Enfin, les lésions possibles des articulations portantes des membres inférieurs, la maladresse engendrée par l'énraîssissement de l'axe vertébral sont des facteurs favorisant les chutes [5, 7, 8, 13].

Pour toutes ces raisons, les fractures du rachis spondylarthritique sont plus fréquentes, à âge égal, que celles du rachis normal ou athrosque et elles succèdent dans beaucoup de cas à des traumatismes plus modestes.

Mais de surcroît ces fractures sont des fractures graves car l'importance des bras de levier, constitués par les segments enraissis du rachis de part et d'autre de la fracture, engendre des contraintes mécaniques considérables, généricatrices d'instabilité.

 Aussi, faudra-t-il tenir compte d'un double risque : risques neurologiques du fourreau dural et de la moelle, risques simplement osseux, de pseudarthrose.

Il restera à envisager brièvement le problème très particulier des hématomes extraduraux rachidiens chez le spondylarthritique :

Fractures rachidiennes

Les fractures du rachis spondylarthritique concernent presque exclusivement les hommes, toujours dans la 2e moitié de la vie, au delà de 50 ans et en moyenne bien au delà de 60 ans. La spondylarthrite est toujours ancienne, souvent stabilisée après une période inflammatoire plus ou moins longue. Parfois la spondylarthrite a évolué à bas bruit, tout au long d'une vie, enraississant pratiquement sans douleur l'axe vertébral et il est quelques observations où le diagnostic de spondylarthrite n'a été porté qu'à l'occasion de la fracture, chez un sujet âgé.

Le traumatisme causal est souvent modeste : la plupart des cas répondent à une simple chute sur le sol. Parfois bien entendu un traumatisme plus important peut être en cause : chute dans un escalier ou éventuellement accident de la route.

Mais parfois aussi un mouvement tout à fait banal est suffisant pour provoquer la fracture, comme chez un de nos patients qui se levait brusquement de son lit perçut à la fois un craquement sonore et une douleur dorso-lombaire aiguë.

Il faut aussi attirer l'attention sur le danger de certaines manœuvres médicales chez des patients à rachis cervical et dorsal enraissis souvent en mauvaise position : des fractures ont ainsi succédé à des manœuvres de réanimation cardiaque ou à des intubations laborieuses. Dans le même ordre d'idée, quelques observations de la littérature attirent l'attention sur le danger d'une rééducation trop énergique qui, d'ailleurs au stade de grand enraississement est assez illogique.

En pratique médicale, deux tableaux assez distincts sont rencontrés posant des problèmes diagnostiques et thérapeutiques différents.

Les fractures franches, de diagnostic immédiat ou rapide, sont malgré tout les plus fréquentes. Dans l'excellente série de 22 cas (chez 20 malades) rapportées par Hunter en 1983 c'était le cas 15 fois.

Pour tant le traumatisme causal avait été minime dans 9 cas sur 15. Pour les 6 autres étaient en jeu les chutes dans des escaliers, des traumatismes de voie publique et une

Presse thermale et climatique, 1988, 125, n° 5.
fois des manœuvres de réanimation cardiaque. Le siège de
de la fracture était cervical dans 14 cas, dorsal une fois seule-
ment.

Toutes ces fractures ont été graves : 13 sur 15 se sont
montrées instables lors des premiers examens.

Cinq seulement d’entre elles n’ont entrainé aucune lésion
neurologique immédiate. Mais 10 par contre ont été grevées
soit de section médullaire complète d’emblée (6 cas), soit de
lésions médullaires partielles (4 cas).

Le pronostic de ces fractures franches et pour la plupart
instables est remarquablement sévère.

--- Le pronostic vital est engagé dans de nombreux cas.
Parmi les 15 observations de Hunter, 3 morts sont à déplorer
dans les premiers jours, par infection ou troubles du rythme
cardiaque, auxquelles il faut ajouter deux morts plus tard-
dives, l’une par amylose l’autre par embolie pulmonaire.

--- Le pronostic neurologique est différent suivant que la
lésion médullaire est complète ou partielle. Dans aucun des
6 cas de section complète, la moindre récupération n’a été
obtenue. En revanche, les 4 cas de lésion médullaire incom-
plète ont récupéré dans une proportion plus ou moins
importante.

Il faut noter qu’aucun de ces cas diagnostiqués sans
retard n’a été opéré : une bonne prise en charge orthopé-
dique a évité toute aggravation secondaire du tableau neu-
rologique.

--- Le pronostic osseux : la consolidation de ces fractures
même initialement instables est généralement obtenue par
une bonne immobilisation dans des délais normaux ou sub-
normaux. Quelques cas néanmoins tardant à consolider doi-
vent faire l’objet d’une ostéosynthèse : ils sont presque exclu-
sivement de siège dorso-lombaire.

Fractures de diagnostic tardif ou très tardif

C’est une particularité remarquable des fractures du rachis
spondylarthritique que l’importante proportion des cas dia-
gnostiqués avec retard : dans la série déjà mentionnée de
Hunter ce fut le cas de près d’un quart des malades.

Il s’agit toujours de cas sans complications neurologiques
précoces, généralement sans déplacement ou avec un dépla-
cement très minime. La rachialgie post-traumatique est alors
le plus souvent imputée à une poussée de la maladie elle-
même. Il faut souligner combien le diagnostic radiologique de
certains de ces cas peut être difficile en raison de la démi-
néralisation et donc de la transparence de ces rachis, en
raison aussi des bouleversements anatomiques induits par
la maladie. Aussi faut-il insister sur la nécessité d’excellents
 clichés complétés éventuellement par des tomodiaphries ou
une tomodensitométrie. L’intérêt de la scintigraphie au tech-
nétium est grand pour localiser le foyer fracturaire.

Ces fractures de diagnostic tardif sont tantôt trans-discal
(fractures de syndesmophytes), plus rarement trans-cor-
porales ou mixtes. Mais il faut surtout insister sur l’associa-
tion quasi constante d’un trait de fracture sur l’arc postérieur.
Il est souvent très difficile à voir et son importance pronosti-
que est grande.

Ces fractures méconnues donc non traitées aboutissent réguliè-
rement à des pseudarthroses qui prennent souvent l’aspect clinique très particulier d’une discopathie érosive post-
fractionnaire [3,11].

Il s’agit de sujets dont la spondylarthrite était éteinte de-
puis de longues années et qui souffrent depuis plusieurs se-

HÉMATOMES EXTRADURAUX RACHIDIENS AU COURS
DE LA SPONDYLARTHRITE ANKYLOSANTE

Ce sont des lésions rares mais proportionnellement beau-
coup plus fréquentes chez le spondylarthrite que chez les
autres sujets. Pecker en 1960 [14], sur 11 hématomes extra-
duraux rachidiens spontanés, remarquait 3 spondylarthrites
ankylosantes.

Parfois, ces hématomes extraduraux compliquent une
fracture importante ou plus souvent modeste. Ils sont dans
certains cas totalement spontanés [2].

Le diagnostic en est porté sur l’apparition secondaire de
signes de compression radiculo-médullaire ou sur l’aggra-
vation secondaire du tableau neurologique faisant suite immé-
diatement à un traumatisme.

La difficulté diagnostique est à son comble quand, trau-
matisme ou non, il n’existe pas de fracture du rachis, ce qui
n’est pas exceptionnel.

Dans tous les cas, le diagnostic repose vraiment sur la
séquence : traumatisme - intervalle libre - déficit neurolo-
gique rapide ou aggravation rapide d’un déficit antérieure-
ment modeste.

Le traitement est bien entendu chirurgical.

Presso thermale et climatique, 1988, 125, n° 5.
CONCLUSION

Le rachis spondylarthritique est remarquablement fragile. Des traumatismes modérés peuvent entrainer des compli- cations redoutables osseuses ou plus encore neurologiques. Des lésions apparemment mineures peuvent être de dia- gnostic radiologiquement difficile et pourtant de pronostic grave.

Références

Rééducation de la spondylarthrite ankylosante

L. SIMON * C. HERISSON, M. ENJALBERT
(Montpellier)

La spondylarthrite ankylosante constitue avec la polyar- thrite rhumatoïde l’un des rhumatismes inflammatoires les plus fréquents. Atteignant l’homme jeune, elle soulève la délicate question d’une prise en charge thérapeutique au long cours. L’étiole de l’affection demeure encore mé- connue, même si de grands progrès ont été réalisés ces dernières années dans la compréhension des processus en cause.

Les grands traits de l’affection doivent être pris en considération dans l’approche thérapeutique. De façon très schématique, il s’agit d’une maladie d’abord douloureuse, puis enraïssissante et déformante tout en sachant qu’en réalité ces trois composantes sont souvent associées de façon variable au cours de l’évolution. C’est aussi une maladie à prédominance axiale, plus précisément pelvi-rachidienne, d’où d’ailleurs l’autre appellation de pelvis- spondylite rhumatoïde. Il existe enfin une participation périphérique, conséquence de l’inflammation des entheses à l’origine de troubles divers, parfois très invalidants, tels que les talalgies.

D’un point de vue thérapeutique, la spondylarthrite anky- losante, maladie générale de caractère inflammatoire, béné- fice d’abord de médications antalgiques et surtout anti- inflammatoires non stéroïdiens. La phonolutaxone fournit ici en règle de remarquables résultats, mais beaucoup d’anti-

inflammatoires modernes apparaissent aussi un soulagement très net. Contrairement à la polyarthrite rhumatoïde, il n’y a pas vraie thérapeutique de fond visant à éteindre à plus ou moins long terme le processus pathologique. Les gestes locaux gardent une place de choix depuis la réalisation d’orthèses, les infiltrations de corticoïdes, ou encore la réalisation de synoviorthèses. La chirurgie du rachis est devenue exceptionnelle, par contre la nécessité de mise en place d’une prothèse totale de hanche pour coex- évolutée demeure une éventualité assez fréquente. L’ensemble de ce traitement permet d’apporter un soulagement impor- tant au patient.

Les différentes mesures de rééducation fonctionnelle sont essentielles, capables, surtout si elles sont mises en route précocement et suivies de façon régulière, afin de concourir à l’indolence, d’améliorer l’état fonctionnel et de prévenir ou de corriger l’enraidissement et les déformations.

La mise en route d’un tel programme de rééducation nécessite de rappeler au préalable l’histoire naturelle et les bases biomécaniques de la maladie. La prise en charge en rééducation comporte d’abord le recours à un certain nombre de techniques à visée antalgique ; en second lieu, et c’est sans doute le point le plus important, des méthodes visant à limiter l’enraidissement et la déformation rachidienne. La composante respiratoire ne doit pas être négligée et motrice des mesures spécifiques. L’ensemble du programme de rééducation proposé à un patient atteint de spondylar- thrite doit être enfin modulé et adapté en fonction de chaque stade et de chaque étape de la maladie.
CRÉNOTHERAPIE ET SPONDYLARTHRITE ANKYLOSANTE

BASES BIOMÉCANIQUES

L’atteinte du segment lombar est le plus souvent ascendant et débute volontiers à partir des articulations sacro-iliaques. Cette localisation favorise le relâchement des ligaments stabilisateurs de ces articulations, une verticalisation du sacrum, une hyperextension des deux hanches et un effacement de la lordose lombaire. Le centre de gravité de la partie supérieure du tronc est déplacé vers l’avant ce qui favorise l’accentuation de la cyphose dorsale. Une ankylose progressive peut fixer cette attitude vicieuse. Dans les formes évoluées, parfois historiques, la limitation du champ visuel consécutive à la projection antérieure de la tête peut être compensée par une hyperlordose cervicale.

L’atteinte des articulations costo-vertébrales et sternocostales diminue l’ampliation thoracique et détermine le développement d’une respiration essentiellement abdominale. Ce phénomène est encore accentué par l’engourdissement des épaules avec rétraction des pectoraux.

Le mouvement de bascule du bassin provoque un rapprochement des insertions des muscles fessiers et abdominaux, diminuant leur force et facilitant d’autant l’installation d’un flexum des hanches. Une coxite peut fixer une telle attitude, en partie compensée par le flexum des genoux à la marche avec rétraction progressive des ischio-jambiers.

Une telle évolution ainsi stéréotypée constitue la forme la plus complète de la maladie. En réalité, toutes les modalités évoluées sont possibles, depuis les formes dououreuses, chroniques, peu enraïssantes et peu déformantes jusqu’aux formes au contraire peu dououreuses, mais parfois enraïssantes à bas bruit. Chacune des composantes de la maladie doit être prise en compte dans l’établissement du programme de rééducation.

ACTION ANTAGLIQUE

Différentes méthodes, dont certaines peuvent être réalisées au domicile du patient, vont compléter l’effet des médications.

— Le repos ne doit pas être négligé, tout en sachant que les douleurs de fin de nuit peuvent gêner le sommeil ; une à deux heures de sieste complémentaire sont parfois utiles. On conseille plus volontiers une position en décubitus dorsal corrigé sur un plan dur en évitant tant que possible le sommeil. Le repos en procubitus a l’avantage de s’opposer à un éventuel flexum de hanche, mais est parfois mal supporté.

— Le dérouillage matinal, à partir de quelques exercices simples, s’avère un adjuvant non négligeable pour le confort du patient.

— La balnéothérapie chaude, utilisée pour ses propriétés antalgiques et décontracturantes, intéresserait aussi bien la vie de tous les jours sous la forme d’une douche ou d’un bain matinal que la préparation à une séance de rééducation. L’hydrothérapie chaude en effet la mobiliisation douce du rachis ou des articulations périphériques peut servir de base à la gymnastique respiratoire.

— Les agents physiques sont proposés de façon complémentaire, notamment les sources de chaleur (parafango, ondes centimétriques).

— Les techniques de massage à visée antalgique ont une place limitée et sont souvent mal tolérées et même contre-indiquées en cas de poussée évolutive.

PROBLÈME RACHIDIEREN

Au-delà des techniques antalgiques, le but essentiel des mesures de rééducation et des exercices enseignés est d’éviter l’enraidissement et de prévenir les déformations.

Limiter le raideur

C’est l’objectif des exercices d’assouplissement enseignés au patient dès le début de l'affection ; la plupart sont répétés quotidiennement sous la forme d’un programme d’auto-rééducation. Il s’agit d’exercices actifs dont l’apprentissage initial bénéficie largement des vertus de l’hydrothérapie (action sédative et décontracturante, effet d'allégement).

A l’étage dorso-lombaire, les exercices de flexion-extension peuvent être localisés ou segment enraidis par l’utilisation judicieuse des positions quadrupédiques selon la méthode de Klapp. Le principe général de ces exercices consiste à demander au patient de creuser le dos, remonter la tête lors du temps inspiratoire, tenir la position quelques secondes, puis revenir lors du temps expiratoire. On réalise aussi des exercices d’assouplissement en inclinaison latérale et surtout en rotation qui se font soit en décubitus dorsal ou latéral, soit assis à califourchon, soit enfin debout en fente avant ou latérale pour fixer le bassin. Tous ces exercices sont rythmés sur le temps respiratoire, adaptés et amples.

A l’étage cervical, le but est de réduire la projection de la tête en avant. On peut réaliser dans cette optique des exercices d’auto-ostéoréduction en position assise, ou debout face à un plan de référence (mur ou espalier).

L’assouplissement des articulations des membres est le complément indispensable de la gymnastique rachidienne. Aux épaules, il faut étirer les muscles grands pectoraux pour éviter l’enraidissement favorisant la cyphose dorsale. Les exercices de contracter-relâcher se font en allongement maximal (main-nuque), associés à la tonicification des fixateurs des omoplates. Aux hanches, la mobilisation en extension et en rotation permet de conserver le pas pelvien. Les muscles ischio-jambiers sont travaillés en course externe ou en étièrement actif pour prévenir la rétroversio du bassin, donc la cyphose lombaire. La prévention du flexum du genou est également impérative. Les techniques de stretching permettent de réaliser un étirement musculaire global des membres.

Les exercices respiratoires sont indissociables du travail thoracique supérieur visant à assourdir les articulations costo-vertébrales et chondro-sternales pour favoriser l’ouverture antérieure.

Prévenir les déformations

La gymnastique quotidienne, basée sur la correction posturelle et la tonicification musculaire doit être mise en œuvre précocement dans un but de prévention. Elle bénéficie ici aussi largement de la kinébalnéothérapie dans sa phase d’apprentissage surtout si l’élément douloureux est encore marqué. L’éducation à l’hygiène de vie est le complément naturel de cette approche thérapeutique.

— La tonicification musculaire doit être pratiquée sur un rachis corrigé au maximum de ses possibilités et s’adapter aux facteurs inflammatoires et aux types de muscles concernés. Les abdominaux sont renforcés en course externe pour éviter la cyphose lombaire et faire participer le muscle

Prose thermales et climatiques, 1988, 125, no 5.
Les muscles spinaux sont tonifiés en course interne, sauf à l’étage cervical où l’on utilise volontiers la position de ponté bustal ou général. Les muscles des membres inférieurs (fessiers, quadriiceps, triceps) sont globalement tonifiés par l’accroupissement, les pontés pelviens, la suspension faciale à l’espalier, les exercices en décubitus ventral ou en position assise. Enfin, le diaphragme peut être renforcé par l’adjonction d’un poids sur l’abdomen.

— La correction posturale ne se conçoit que sur un rachis assoupli et tonifié au plan musculaire. Elle consiste en une étude active de la mauvaise position et de la position corrigée. Elle est réalisée selon une progression bien codifiée. Au début, un plan de référence est nécessaire : le sol en décubitus et le mur en position assise ou debout. Ensuite, la correction se fait face à un miroir quadrillé. Un dernier temps essentiel ne doit pas être négligé : l’adaptation à la marche.

— Les postures proprement dites sont de plus en abandonnées au profit de la rééducation active, souvent plus valorisante et surtout moins douloureuse. Elles sont de toute façon orientées vers la décophase, la restauration de la lordose et la réduction du flexum de hanche.

— La place de l’appareillage, en particulier à visée correctrice et des orthèses d’immobilisation du tronc, nous semble à priori limitée sauf si l’on a la preuve d’une évolutivité réelle et rapide vers la cyphose dorsale ou dorso-lombaire.

— Les conseils d’hygiène de vie sont d’une importance capitale. On s’attache à une étude précise des différentes positions du sujet au cours du travail, des transports, ainsi que dans la vie de tous les jours afin de proposer les adaptations nécessaires dans l’optique d’une économie rachi-dienne. L’éducation au port de charge, la surveillance du poids compléteront harmonieusement cette approche ergonomique. La pratique du sport sera orientée vers des techniques d’étirement, notamment la natation en dos crawlé ou encore le volley-ball.

COMPOSANTE RESPIRATOIRE

La spondylarthrite ankylosante n’épargne pas les articulations de la cage thoracique. L’ankylose a ici pour conséquence une limitation de l’expansion thoracique majorée par la cyphose dorsale et pouvant être responsable d’un syndrome restrictif avec réduction de la capacité vitale. Bien que le retentissement clinique de cette atteinte soit modéré et en règle tardif, n’occasionnant qu’une gène minime dans la vie courante, la rééducation respiratoire tient une place prépondérante dans la prise en charge kinésithérapeutique du spondylarthrite. Elle est le complément obligatoire de la rééducation rachi-dienne.

En début d’évolution, face à l’enraîsissement progressif de la cage thoracique, on développera au maximum et le plus longtemps possible la respiration costale. A un stade plus avancé, l’ankylose et la cyphose dorsale étant constituées, la respiration n’étant plus assurée que par le diaphragme, on oriente la rééducation vers une optimisation de la respiration abdomino-diaphragmatique.

La prévention de l’ankylose thoraco-rachi-dienne est un objectif primordial. La composante respiratoire est indis-associable du problème rachi-dien car en effet, la conservation de la souplesse vertébrale ou à défaut l’obtention d’une ankylose en rectitude et non en cyphose du rachis dorsal, est assez bien toléré car préservant une bonne capacité respiratoire et une certaine mobilité du gril costal.

On entendra le plus longtemps possible la respiration costale en sollicitant au maximum l’ampliation thoracique active des côtes et en limitant le jeu des coupoles diaphragmatiques par contrôle de la poussée abdominale.

Ce n’est qu’au stade d’ankylose thoracique définitive que sera développée la respiration abdomino-diaphragmatique, seul mécanisme encore fonctionnel.

Les exercices de tonification musculaire constituent le complément indispensable des exercices d’assouplissement, mais nécessitent une grande prudence dans leur réalisation. On tonifie essentiellement les transverses dont le rôle dans l’expiration est primordial par des exercices en quadrupédie contre le poids des viscères abdominaux. Concernant les muscles inspirateurs accessoires, une tonification trop poussée et réalisée en course interne peut avoir un effet néfaste en majorant la cyphose et l’ensemble des épaules : on réalise donc de façon préférentielle des étreintes des pectoraux et un renforcement des stabilisateurs des omoplates afin de favoriser l’expansion thoracique supérieure.

L’essentiel de la rééducation musculaire doit intéresser les paravертebraux, seul moyen de lutte contre l’action décophosante de la pesanteur. Les muscles extenseurs du rachis sont travaillés en course interne afin de redresser la courbure dorsale.

Enfin, dès la phase initiale de la maladie, il est nécessaire de réaliser un renforcement des muscles inter-costaux par des exercices d’inspiration profonde contre résistance manuelle appliquées sur le thorax afin de maintenir active-ment et de façon permanente l’élasticité de la paroi thoracique.

La réalisation régulière de méthodes de rééducation ne vise pas à restaurer une fonction respiratoire normale, mais à limiter la réduction progressive de la capacité vitale. Par-delà la rééducation proprement dite, il est du devoir du thérapeute de rappeler au patient les effets nocifs du tabac pouvant majorer les risques d’insuffisance respiratoire dans ce contexte.

RÉÉDUCATION ADAPTEE À CHAQUE ÉTAPE

Thérapeutiques physiques et médicamenteuses doivent toujours être menées de pair, harmonieusement combinées. Leur importance respective doit être reconsidérée à chaque période de la maladie.

Au début, le malade est douloureux, candidat potentiel à l’enraîsissement, voire à la déformation. En dehors des méthodes antalgiques, on réalise l’apprentissage d’une gymnastique appropriée qui sera poursuivie de façon quotidienne. Les conseils d’hygiène de vie seront dès lors personnalisés. Il s’agira donc là essentiellement d’une phase d’éducation.

Plus tard, il s’agit souvent encore d’un malade douloureux, surtout par périodes, mais il y a déjà un certain degré d’ankylose. Le but est d’assouplir, de prévenir l’aggravation. L’hygiène de vie enseignée doit être réactualisée, adaptée aux problèmes nouveaux. Le choix des exercices de rééducation est fait ponctuellement en fonction de l’état du patient.

Au stade d’ankylose, les douleurs sont souvent étendues. Le but est le maintien d’un capital fonctionnel rachi-dien ou respiratoire compatible avec la vie de tous les jours.
On insiste tout particulièrement sur le travail diaphragmatique, l’entretien de la sangle abdominale et des articulations périphériques.

Le succès des mesures de rééducation telles que nous venons de les envisager est leur poursuite de façon régulière. La rééducation de la spondylarthrite, initiée sous contrôle kinésithérapique doit être avant tout une auto-rééducation vécue par le patient comme un besoin et non pas une contrainte. C'est le seul moyen pour obtenir sa coopération, sa participation active et son adhésion au traitement.

RÉSUMÉ

La rééducation de la spondylarthrite ankylosante s’intègre dans une prise en charge globale, intéressant l’axe pelviorachidien, mais aussi les articulations des membres et la fonction respiratoire qui lui sont intimement liés. Cette rééducation repose sur des bases biomécaniques précises et est adaptée à chacune des étapes de la maladie en fonction des données du bilan fonctionnel. Trois axes thérapeutiques sont développés : les techniques à visée antalgique, la prévention de l’enraidissement par une gymnastique assouplissante appropriée et l'action sur la déformation basée sur la correction posturale et la tonification musculaire. Les conseils d’hygiène de vie sont le complément indispensable de cette approche.

REFERENCES

Crénothérapie de la spondylarthrite ankylosante à Aix-les-Bains (à propos de 29 observations)

F. MAJDOUB, J. FRANÇON *

(Aix-les-Bains)

Au cours des trois dernières années (84, 85, 86), nous avons observé dans notre clientèle privée 39 cas de spondylarthrite ankylosante ; 10 d’entre eux n’ayant effectué qu’une seule cure, ne seront retenues, pour la présente étude, que 29 observations concernant 8 femmes (27,5 p. cent) et 21 hommes (72,5 p. cent), soit une proportion de femmes plus élevée que celle notée habituellement dans la spondylarthrite ankylosante.

L’âge de début de leur maladie est en moyenne de 29 ans (avec des extrêmes de 12 et 57 ans) ; l’ancienneté de la spondylarthrite ankylosante à la première cure va de 1 an à 35 ans avec une moyenne de 13,5. Les 29 patients ont effectué de 2 à 20 cures, soit une moyenne de 9,4 plus forte que celle de l’ensemble de nos curistes (6,4).

23 spondylarthrites ankylosantes sont apparemment primitives, 6 sont secondaires et reconnaissent les causes suivantes : 3 maladies de Crohn, 1 recto-colite hémorragique, 1 dysenterie à Yersinia, 1 cas post-traumatique.

Toutes comportent une atteinte rachidienne : 12 sont des formes axiales pures alors que dans 17 cas, sont notées des localisations périphériques, surtout rhizoméliques (hanches : 7 cas ; épaules : 7 cas) ou affectant les jointures des membres inférieurs (genoux : 6 cas ; pieds : 4 cas).

La vitesse de sédimentation n’est élevée que 6 fois sur 15 observations où elle a été pratiquée. Le HLA B 27 est retrouvé 7 fois sur 9.

Nous avons cherché à évaluer l’action de la cure thermale sur la douleur et la raideur à court et à moyen terme.

A court terme

C’est-à-dire à la fin de la cure et dans l’année qui la suit, les résultats sur la douleur sont très satisfaisants puisque 65 p. cent des patients sont améliorés sur une période allant de 3 à 6 mois et presque la moitié de tous les patients ne souffrent plus 6 mois après la cure (tableau I).

Les spondylarthrites secondaires semblent moins bénéficiant de la cure : sur 6 patients, 2 seulement passent 6 et 11 mois sans souffrir et est aggravé.

* 12, rue Albert 1er, 73100 AIX-LES-BAINS.

Presses thermale et climatique, 1988, 125, n° 5.
TABLEAU I.

<table>
<thead>
<tr>
<th>Améliorés sur une période de 6 mois</th>
<th>Améliorés entre 3 et 6 mois</th>
<th>Aggravés</th>
<th>Stables</th>
<th>Total</th>
<th>Absence de traitement médicamenteux</th>
</tr>
</thead>
<tbody>
<tr>
<td>14 = (48,2)</td>
<td></td>
<td>5</td>
<td>2</td>
<td>8</td>
<td>29</td>
</tr>
<tr>
<td>19 = 65 %</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

TABLEAU II.

<table>
<thead>
<tr>
<th>Améliorés</th>
<th>Aggravés</th>
<th>Stables</th>
<th>Total</th>
</tr>
</thead>
<tbody>
<tr>
<td>MS</td>
<td>4</td>
<td>0</td>
<td>16</td>
</tr>
<tr>
<td>OM</td>
<td>10</td>
<td>0</td>
<td>10</td>
</tr>
<tr>
<td>S</td>
<td>8</td>
<td>0</td>
<td>12</td>
</tr>
<tr>
<td>DS</td>
<td>10</td>
<td>0</td>
<td>10</td>
</tr>
<tr>
<td>AT</td>
<td>14</td>
<td>0</td>
<td>6</td>
</tr>
</tbody>
</table>

TABLEAU III.

<table>
<thead>
<tr>
<th>Améliorées</th>
<th>Aggravées</th>
<th>Stables</th>
<th>Total</th>
</tr>
</thead>
<tbody>
<tr>
<td>MS</td>
<td>2 = 6,8 %</td>
<td>5 = 17,2 %</td>
<td>22 = 75,8 %</td>
</tr>
<tr>
<td>OM</td>
<td>4 = 13,7 %</td>
<td>1 = 3,4 %</td>
<td>24 = 82,7 %</td>
</tr>
<tr>
<td>S</td>
<td>7 = 24,1 %</td>
<td>9 = 31 %</td>
<td>13 = 44,8 %</td>
</tr>
<tr>
<td>DS</td>
<td>7 = 24,1 %</td>
<td>8 = 27,5 %</td>
<td>14 = 48,2 %</td>
</tr>
<tr>
<td>AT</td>
<td>12 = 41 %</td>
<td>9 = 31 %</td>
<td>8 = 27,5 %</td>
</tr>
</tbody>
</table>

Les mensurations n’ayant pas été notées systématiquement à la fin de la cure pour tous les patients, l’effet immédiat de la cure sur la raideur n’est étudiée que chez 20 patients. Les résultats en fin de cure et au bout d’un an figurent sur les tableaux II et III. Ils font apparaître une nette amélioration en fin de cure : elle porte surtout sur l’ampliation thoracique et, à un moindre degré, sur les distances occiput-mur et doigts-sol. Un an après la cure, l’amélioration s’est confirmée ou plus souvent maintenue chez près de deux tiers des patients ; la dégradation des résultats au cours de l’année concerne surtout l’ampliation thoracique.

TABLEAU IV.

<table>
<thead>
<tr>
<th>Améliorés</th>
<th>Aggravés</th>
<th>Stables</th>
<th>Total</th>
</tr>
</thead>
<tbody>
<tr>
<td>MS</td>
<td>7 = 20 %</td>
<td>4 = 14 %</td>
<td>16 = 60 %</td>
</tr>
<tr>
<td>OM</td>
<td>6 = 23 %</td>
<td>10 = 37 %</td>
<td>11 = 40 %</td>
</tr>
<tr>
<td>S</td>
<td>4 = 15 %</td>
<td>12 = 44 %</td>
<td>11 = 41 %</td>
</tr>
<tr>
<td>DS</td>
<td>5 = 23 %</td>
<td>11 = 40 %</td>
<td>10 = 37 %</td>
</tr>
<tr>
<td>AT</td>
<td>5 = 18,6 %</td>
<td>15 = 55,5 %</td>
<td>7 = 28 %</td>
</tr>
</tbody>
</table>

A moyen terme

En considérant les malades ayant effectué 3 cures ou davantage (27 cas), l’évaluation de la douleur ne peut s’établir qu’à travers la consommation médicamenteuse. Elle-ci est difficile à quantifier dans la mesure où les médicaments anti-inflammatoires sont souvent changés en fonction de leur tolérance, de leur efficacité ou de la mise sur le marché de nouveaux produits. Les seuls patients à retenir sont ceux qui ont interrompu totalement leur traitement anti-inflammatoire ou diminué la posologie du médicament qu’ils avaient l’habitude de prendre. Ainsi :

- 3 patients ont arrêté tout traitement respectivement à la 5°, 6° et 8° cure ;
- 2 ont arrêté la corticothérapie après une première cure ;
- 4 ont diminué leurs doses d’AINS de façon notable après leur première cure.

soit au total 9 cas sur 27.

L’évolution de la raideur pour les 27 malades ayant suivi 3 cures ou plus est résumée sur le tableau IV.

L’aggravation n’atteint les 50 p. cent que pour l’ampliation thoracique (55,5 p. cent). Les autres mensurations sont améliorées ou stables dans la majorité des cas.

En conclusion de cette courte étude, deux notions se dégagent :

- L’efficacité de la crénithérapie sur les douleurs de la spondylarthrite ankylosante, est vérifiée chez près des deux tiers de nos patients après chaque cure et pour une durée de 3 à 6 mois ; cet effet antalgique a permis chez certains d’entre eux (un tiers environ) d’interrompre ou de diminuer les médicaments anti-inflammatoires.

- Le rôle de la cure thermale dans la prévention de l’ankylose et des déformations rachiennes, en permettant le contrôle de la technique d’auto-rééducation et en encourageant le patient à persévérer dans la pratique régulière d’exercices gymniques, facilités en piscine d’eau thermale.
La crénotherapie de la spondylarthrite ankylosante

R. LOUIS *

(Mbourbon-Lancy)

MATÉRIEL D’ÉTUDE

Notre travail concerne les observations de soixante patients atteints de spondylarthrite ankylosante (Sp.A) soignés dans notre station de Bourbon-Lancy au cours des quinze dernières années (1972 à 1986). Pendant cette période, nous avons au total réuni 4 950 dossiers de malades ayant effectué une cure thermale.

Le pourcentage de Sp.A est de 1,21 p. cent, chiffre comparable à celui trouvé lors d'études antérieures :
— 1972 sur 500 dossiers 4 cas (0,8 p. cent)
— 1979 sur 500 dossiers 9 cas (1,8 p. cent)

La répartition par âge et par sexe est la suivante :

- Population générale des curistes :
 - femmes 70,40 p. cent 65 ans
 - hommes 23,60 p. cent 63 ans

- Spondylarthrite ankylosante :
 - femmes 17 cas 28,33 p. cent 48 ans
 - hommes 43 cas 71,66 p. cent 45 ans

L'âge de début moyen de nos spondylarthrites ankylosantes, toutes formes confondues, est de 31 ans, avec des âges extrêmes de 5 ans à 57 ans. Après exclusion des formes à début juvénile (6 cas), cet âge moyen de début est de 33 ans.

Il est intéressant de constater dans notre série le long délai qui s'écoule entre le début apparent de l'affection et la date du diagnostic :
— 0 à 5 ans 17 cas
— 6 à 10 ans 18 cas
— 11 à 15 ans 10 cas
— 16 à 20 ans 4 cas
— 21 à 30 ans 6 cas
— + de 30 ans 5 cas

Dans 25 cas, il a fallu attendre plus de 10 ans avant qu'un diagnostic exact soit posé. L'âge moyen du malade lors du diagnostic est de 44 ans (46 ans après exclusion des formes à début juvénile). Il a donc fallu en moyenne 13 ans avant que la maladie soit identifiée. Ceci montre à la fois la difficulté du diagnostic de la Sp.A à son début, mais aussi, sans doute, la méconnaissance fréquente de cette affection par le médecin...

Les aspects cliniques de nos cas de Sp.A peuvent se résumer ainsi :

Aspects cliniques
— Formes juvéniles 6 cas
— Formes de l'adulte 54 cas
— Formes avec psoriasis 4 cas
— Formes réactives 10 cas
— Formes post-traumatiques 2 cas
 (1 cas de traumatisme révélateur de la pelvispondylite rhumatismale)

* 2, place d'Alligre, 71140 BOURBON-LANCY.

TABLEAU I. — Handicap et évolutivité : forme axiale (41 cas).

<table>
<thead>
<tr>
<th>Stade évolutif</th>
<th>I</th>
<th>II</th>
<th>III</th>
<th>IV</th>
<th>Total</th>
</tr>
</thead>
<tbody>
<tr>
<td>Quiescente</td>
<td></td>
<td></td>
<td></td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>Peu évolutif</td>
<td>3</td>
<td>7</td>
<td>4</td>
<td>2</td>
<td>16</td>
</tr>
<tr>
<td>Moyennement évolutif</td>
<td>2</td>
<td>8</td>
<td>6</td>
<td>4</td>
<td>20</td>
</tr>
<tr>
<td>Très évolutif</td>
<td></td>
<td></td>
<td>3</td>
<td>1</td>
<td>4</td>
</tr>
<tr>
<td>Total</td>
<td>5</td>
<td>15</td>
<td>14</td>
<td>7</td>
<td>41</td>
</tr>
</tbody>
</table>

TABLEAU II. — Handicap et évolutivité : forme mixte (19 cas).

<table>
<thead>
<tr>
<th>Stade évolutif</th>
<th>I</th>
<th>II</th>
<th>III</th>
<th>IV</th>
<th>Total</th>
</tr>
</thead>
<tbody>
<tr>
<td>Quiescente</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>0</td>
</tr>
<tr>
<td>Peu évolutif</td>
<td>1</td>
<td>3</td>
<td>2</td>
<td></td>
<td>6</td>
</tr>
<tr>
<td>Moyennement évolutif</td>
<td>1</td>
<td>7</td>
<td>1</td>
<td></td>
<td>10</td>
</tr>
<tr>
<td>Très évolutif</td>
<td>2</td>
<td>1</td>
<td></td>
<td></td>
<td>3</td>
</tr>
<tr>
<td>Total</td>
<td>4</td>
<td>11</td>
<td>4</td>
<td>0</td>
<td>19</td>
</tr>
</tbody>
</table>

TABLEAU III.

<table>
<thead>
<tr>
<th>Nb cures</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
<th>6 & 10</th>
<th>11 & 20</th>
<th>+ de 20</th>
</tr>
</thead>
<tbody>
<tr>
<td>Nb patients</td>
<td>7</td>
<td>17</td>
<td>5</td>
<td>6</td>
<td>7</td>
<td>12</td>
<td>5</td>
<td>1</td>
</tr>
</tbody>
</table>

— Type axial 41 cas
— Type mixte 19 cas
— Forme axiale (41 cas) (tableau I)
— Forme mixte (19 cas) (tableau II)

La crénotherapie de la spondylarthrite ankylosante

Nos 60 patients ont effectué au total 305 cures (tableau III).

Le renouvellement de la cure pendant de nombreuses années consécutives indique que de nombreux patients apprécient favorablement la crénotherapie, et ses résultats.

L'âge moyen de la première cure était de 46 ans, il est intéressant de le comparer à l'âge moyen de début de la maladie (31 ans) et à celui du diagnostic (44 ans).

La tolérance de la cure a été habituellement excellente. Sur 305 cures, nous avons rencontré :
— 1 interruption pour affection intercurrente,
— 16 poussées douloureuses (5,24 p. cent) ayant nécessité le renforcement du traitement antalgique ou anti-inflammatoire.
— Une bonne tolérance dans 94,76 p. cent des cas.

Presse thermale et climatique, 1988, 125, n° 5.
RÉSULTATS

Les résultats sont difficiles à apprécier par le médecin thermaliste. Pour cette évaluation, il faudra considérer deux catégories de données :
— d’une part l’action sur l’inflammation (l’évolivité) ;
— d’autre part, l’action sur l’impotence fonctionnelle.
L’évolivité sera appréciée sur les éléments suivants :
— modification de l’état général ;
— manifestations douloureuses au repos et lors des mouvements (appréciation essentiellement subjective) ;
— durée du dérouillogage matinal ;
— éventuellement, aspect et mensuration des articulations périphériques ;
— vitesse de sédimentation des hématoïdes.
L’impotence fonctionnelle (handicap) est plus aisément mesurable et l’on apprécie notamment :
— test de Schober ;
— distance doigt-sol ;
— distance occiput-mur ;
— distance menton-sternum ;
— périmètre thoracique.

Au surplus, on tiendra compte de la consommation médicamenteuse (notamment antalgique et anti-inflammatoire) et des caractéristiques de la vie professionnelle et familiale.

Ces bilans peuvent être établis en fin de cure par le médecin thermaliste lui-même, mais ils sont alors peu significatifs. Ils pourraient être effectués par le médecin traitant avec un recul de 3 mois au moins.

En réalité, il est exceptionnel que cette étude soit effectuée — et si par hasard elle est faite, les résultats n’en sont que plus exceptionnellement encore transmis au médecin thermaliste...

Reste le bilan effectué en cas de retour dans la station l’année suivante. Évidemment, cela ne concerne qu’un nombre relativement de malades. Les absents ne peuvent être pris en compte, puisque la cause du non renouvellement (inefficacité - aggravation ou au contraire stabilisation, motif sans rapport avec la Sp.A) reste inconnue habituellement. En revanche, le médecin thermaliste peut recueillir des informations précieuses sur l’évolution pendant l’intercure faire un bilan dans des conditions comparables d’une année sur l’autre.

La tolérance à la crénothérapie est rapportée dans le tableau IV et le pourcentage des résultats favorables dans le tableau V.

A la lumière de notre étude, il est possible de définir quelques principes pouvant servir de guide d’utilisation des soins de crénothérapie dans la Sp.A, principes d’ailleurs valables dans le traitement thermal de nombre d’affections rhumatismales.

<table>
<thead>
<tr>
<th>TABLEAU IV. — Tolérance à la crénothérapie.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Formes peu évolutives</td>
</tr>
<tr>
<td>------------------------</td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Etat de la maladie</td>
</tr>
<tr>
<td>--------------------</td>
</tr>
<tr>
<td>Forme peu évolutif</td>
</tr>
<tr>
<td>Forme moyenéement évolutif</td>
</tr>
<tr>
<td>Invalidité minime</td>
</tr>
<tr>
<td>Invalidité modérée</td>
</tr>
<tr>
<td>Invalidité importante</td>
</tr>
<tr>
<td>Total</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>TABLEAU VI. — Intérêt de la crénothérapie en fonction du traitement.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Caractéristiques du traitement médicamenteux</td>
</tr>
<tr>
<td>---</td>
</tr>
<tr>
<td>Absence de traitement</td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td>Traitement :</td>
</tr>
<tr>
<td>— inefficace</td>
</tr>
<tr>
<td>— mal toléré</td>
</tr>
<tr>
<td>— risque danger</td>
</tr>
<tr>
<td>Traitement efficace</td>
</tr>
<tr>
<td></td>
</tr>
</tbody>
</table>

En premier lieu, la crénothérapie se propose de soulager les phénomènes douloureux. Elle utilise à cet effet l’action sédatrice de la chaleur, de la balnéothérapie et de l’eau thermale elle-même. C’est seulement ensuite que l’on tentera :
— de récupérer une mobilité satisfaisante ;
— de corriger avec une douceur extrême une attitude déflectueuse.

On évitera dans la mobilisation forcée, les manipulations intempestives susceptibles d’entrainer en fin de compte une aggravation.

Si pendant la cure survient une poussée douloureuse, on n’hésitera pas à réduire l’hémodialyse, les manœuvres de rééducation et à prescrire largement antalgiques et anti-inflammatoires. Contrairement à une légende tenace, toute
absorption de médicaments n’est pas à proscrire pendant la cure thermale!

CONCLUSION

En conclusion, rappelons que, dans la Sp.A, comme dans les autres types d’affections de l’appareil locomoteur, la cure thermale ne prétend pas être le « traitement miracle » exclusif. Nous pensons qu’il s’agit là d’une thérapeutique complémentaire des autres traitements, seulement d’appoint dans un certain nombre de cas, essentielle dans beaucoup d’autres (par exemple s’il existe une intolérance médicamenteuse), souvent efficace, et en tous cas bien tolérée. Il y aura intérêt à ne pas trop différer le recours à la crénothérapie, avant que des déformations irréversibles ne viennent lui retirer beaucoup d’intérêt. Le tableau montre comment on peut interpréter le rôle de la crénothérapie chez nos 60 patients.

Présentation de l’association contre la spondylarthrite ankylosante et ses conséquences

Résumé

G. VANCON, J. MARION, G. FAURE, P. NETTER,
J. POUREL, A. GAUCHER *
(Vandœuvre-les-Nancy)

L’association contre la spondylarthrite ankylosante et ses conséquences (ACSAC) a été fondée à Nancy le 5 mai 1979 par un groupe de personnes atteintes de cette affection et par quelques médecins rhumatologues. Cette création était la conséquence d’une prise de conscience des besoins d’information et de coopération, des patients atteints de spondylarthrite ankylosante. Le besoin d’aide et d’information est fortement ressenti aussi bien du point de vue socio-professionnel qu’en ce qui concerne les mesures thérapeutiques et l’aménagement des activités courantes. L’ACSAC a été organisée de façon à répondre à cette demande, avec la préoccupation d’éviter la passivité et le repli sur soi.

L’association est composée actuellement de 245 membres actifs : malades atteints de spondylarthrite ankylosante, médecins et auxiliaires médicaux, plus particulièrement conscients par le traitement de cette maladie, de membres associés, bienfaiteurs et de membres d’honneur.

Les moyens d’action auprès des malades répartis dans toute la France ont été augmentés grâce à la création de sections régionales.

Le bureau de l’association est présidé par un malade ; cette règle permet la prise en charge effective et active par les malades de leur association. Le bureau de l’association peut statutairement prendre l’avis, technique et consultatif, d’un comité médical.

Les moyens d’action prévus par l’association comportent des réunions, la diffusion de bulletins d’information, des interventions éventuelles auprès de la Sécurité sociale, des pouvoirs publics, ces commissions techniques d’orientation et de reclassement professionnel, des services de médecine du travail ainsi qu’une aide à la recherche médicale concernant la spondylarthrite ankylosante. Des sociétés sœurs se sont organisées et fonctionnent dans dix sept pays étrangers. Les rapports qui se sont établis avec elles paraissent très intéressants et encourageants.

* Siège Social de l’ACSAC : Clinique Rhumatologique, CHU Brabois, 54500 VANDŒUVRE-LES-NANCY.

Presser thermale et climatique, 1988, 125, n° 5.
Session 3

Rhumatologie et immunologie

210 cas de spondylarthrite ankylosante, suivis de 2 à 30 ans en milieu thermal

F. FORESTIER *, B. BEN LARACHE **, A. MONROCHE ***
(Aix-les-Bains, Angers)

Notre série est originale en ce sens que l’âge moyen (48 ans) est relativement élevé pour une affection qui survient habituellement chez l’homme jeune.

Il s’agit donc d’une spondylarthrite ankylosante habituellement stabilisée et pour laquelle la raideur et la déformation en mauvaise position du rachis et des hanches est une menace fonctionnelle qui peut être sérieuse, surtout lorsqu’elle est globale ou lorsqu’elle menace un blocage cervical en syphose accentuée.

182 sont de sexe masculin, 27 sont de sexe féminin.

Au terme de 1 à 18 cures thermales et avec le recul d’observation de 2 à 30 ans, nous constatons les effets suivants :

— la douleur, évaluée selon sa topographie plus ou moins étendue, son apparition au repos, son intensité, sa durée, en heures journalières, au rythme nocturne, en nombre de jours, de semaines ou de mois, est réduite dans 78,8 p. cent de nos cas et pendant une durée de 7,8 mois de l’année ;

— la raideur est observée selon les différents paramètres : la distance doigts-sol, en flexion, en extension, en rotation, en améliorée dans 59,4 p. cent des cas, stable dans 38,4 p. des cas ; la distance menton-sternum, en flexion est améliorée selon un chiffre voisin, dans une proportion voisine de 57,9 p. cent ; par contre, le Schöber est le plus souvent stable (59,55 p. cent).

Nous constatons par ailleurs que la flèche (distance occiput-mur), que l’on doit toujours observer dans les spondylarthrites ankylosantes en position assise, et non pas debout, est améliorée dans 62,23 p. cent des cas ; l’amplitude thoracique est en progrès dans 60,96 p. cent des cas.

Nous observons une association de localisations vertébrales et sacroiliaques et périphériques dans la proportion suivante :

— hanches (coxites) : 13,81 p. cent ;
— pieds et talons : 4,76 p. cent ;
— épaules : 2,38 p. cent ;
— bien entendu, l’iris est fréquent : 17,14 p. cent.

CONSUMMATION MÉDICAMENTEUSE

Nous n’avons pu établir avec précision que des 168 dossiers dans lesquels 50 mg d’aspirine comptent pour 1, représentant par exemple 100 mg de phénylbutazone en 25 mg d’indométhacine.

Nous avons obtenu la cessation totale des médicaments dans 19,05 p. cent des cas, la réduction des trois quarts dans 19,64 p. cent des cas. Par contre, la consommation reste stationnaire dans 22 p. cent des cas.

L’activité professionnelle

Essentielle chez de jeunes hommes frappés par cette affection qui pourrait être invalidante et dont l’âge est inférieur à 50 ans, elle est maintenue ou rétablie intégralement dans 15,9 p. cent des cas, améliorée partiellement dans 78,6 p. cent des cas, elle est stable dans 20 p. cent des cas.

Seuls, 1,2 p. cent de nos cas ont été contraints de réduire très notablement leur activité professionnelle. Il est vrai que dans bon nombre de cas, une transformation des conditions de travail, voire un changement de profession a été nécessaire.

* Villa Forestier, avenue d’Albion, 73100 AIX-LES-BAINS.
** ALGERIE.
*** 11, rue d’Alsace, 49100 ANGERS.

Pressée thermale et climatique, 1988, 125, no 5.
L'étude des symptômes radiologiques nous a confirmé la présence pratiquement constante d'atteinte sacro-iliaque et de syndesmophytes, l'image en bambou avec rail médian n'étant observée que dans 36,6 p. cent des cas.

APPRECIATION GLOBALE DE L'EVOLUTION

Suivre l'évolution au long cours de nombreux cas de spondylarthrite ankylosante conduit à une attitude très nuancée. La gravité de cette affection varie considérablement d'un cas à un autre.

Très curieusement, les cas de haute gravité, entraînant des douleurs sévères, une déformation en cyphose importante, associée à une coxite en flexum irréductible, semblent exceptionnellement rares à notre époque, depuis que des soins compétents sont aisément disponibles partout. Depuis 15 ans, nous ne connaissons qu'un cas de ce type, alors que de nombreux cas très sévères se sont présentés à nous au cours de notre expérience avant 1965. Ces cas sont hors de portée du thermalisme.

Les cas de gravité moyenne sont liés surtout au blocage cervical en flexion accentuée, limitant totalement les rotations et à une coxite précoce avec flexum de 15° ou plus, que la rigidité lombo-pelvienne ne permet pas de compenser. Le but de la thérapeutique thermale et de la kinésithérapie est de limiter l'enraidissement et la déformation, de développer les compensations par les articulations restées mobiles. Le patient doit faire des efforts réguliers de postures et des mouvements appropriés, dont l'exécution est grandement facilitée par le séjour et la cure thermale ; l'effet de ce traitement se prolonge habituellement durant trois à six mois et souvent plus. Généralement, la période critique passe et la déformation n'est pas fixée définitivement. Au bout de quelques années, le processus inflammatoire s'étend. Est-ce l'effet des traitements ou une évolution naturelle ?

Tardivement, nous avons à traiter des patients dont la plus grande partie du rachis est enraidie, mais dont la flèche cervicale est comprise entre 10 et 18 cm. Certes, il s'ensuit une légère infirmité : mais elle est très supportable à notre époque de mécanisation presque universelle.

Mais le déséquilibre mécanique lié au déport antérieur du rachis, souvent majoré par une légère perte d'extension des deux hanches, entraîne des tensions musculaires rachidiennes et autres qui peuvent conduire à une coxarthrose tardive. D'autre part, la cyphose et la raideur rachidienne haute induisent des douleurs au niveau du sternum et des épaules. Mais ces difficultés peuvent être réduites par les cures thermales et une kinésithérapie appropriée, appliquées de façon répétitive.

Enfin, beaucoup de spondylarthrites ankylosantes sont tout à fait bénignes, parfois même découvertes à la radiographie, justifiée par d'autres conditions pathologiques.

D'après notre étude statistique, l'effet le plus remarquable des cures thermales est la réduction de la consommation médicamenteuse.

Il nous semble donc que la spondylarthrite ankylosante est un rhumatisme inflammatoire habituellement bien contrôlé par la médecine moderne ; on pourrait presque dire « c'est un rhumatisme inflammatoire bénin ».

RESUME

Notre série analyse les différents paramètres chiffrés de 210 cas de spondylarthrite observés à Aix-les-Bains, pendant plusieurs décades, dans notre cabinet privé et à l'hôpital des rhumatologues dans les suites d'une série minimum de trois cures thermales, souvent au cours de cures ultérieures ; 62 de nos patients sont revenus plus de 10 ans, 28 plus de 20 ans. Nous constatons une amélioration de 8 à 10 mois par an.

Plus précisément, nous observons une amélioration de la douleur rachidienne dans 78,89 p. cent des cas ; elle est stable mais relativement modérée dans 18,76 p. cent des cas, aggravée dans 2,42 p. cent des cas.

La consommation médicamenteuse est réduite dans 77,6 p. cent des cas et toute absorption médicamenteuse supprimée dans 19,05 p. cent des cas. L'activité professionnelle et occupationnelle appréciée de façon certaine que chez 94 patients, est améliorée dans 71,28 p. cent des cas ; dans seulement 1,2 p. cent des cas, l'activité a été complètement interrompue.

Ces résultats très encourageants justifient la très grande fidélité à la cure thermale de malades atteints de spondylarthrite qui, souvent jeunes, ont un besoin impérieux d'être maintenu en état de capacité fonctionnelle.

Nos dossiers de spondylarthrite ankylosante sont peu nombreux, 1/200, mais compte tenu de la plus grande répétition des séjours, leur nombre est d'environ 1,2 p. cent de nos cures annuelles.
La pelvispondylite rhumatismale à Gréoux-les-Bains
Méthodologie - Résultats
A propos de 50 cas

C. REILLER **, F. WIDEMANN *, B. ASTIER *, R. PASCHAL *,
C. PEYROTTE *, D. REKASSA *, A. REKASSA-PROVOST *, R. BARTOLIN ***, C. DELBOY ***
(Gréoux-les-Bains, Marseille)

Nous avons suivi de manière statistique et informatisée à Gréoux-les-Bains 50 patients présentant une pelvispondylite rhumatismale.

A partir de dossiers médicaux informatisés mis au point spécialement pour cette étude, nous avons tenté d’établir une première approche des effets immédiats de la cure sur cette affection.

Le procédé utilisé à cette fin est celui du système SYCVAR (Service du Laboratoire statistique et informatique de M. le Professeur Roux - Faculté de médecine de Marseille - et Institut de recherches en thérapeutiques hydroclimatologiques et médicales - Service du Professeur Delboy).

Les dossiers informatisés comportent
— une fiche de « base » commune à tous les curistes, incluant divers paramètres stables et fixes dans le temps (exemple : motif de cure, nombre de cures antérieures, choix de la station, antécédents...).
— différents « satellites » qui apportent des données variant dans le temps. Ce sont les satellites : individuel, maladie, soins, et spondylarthrite ankylosante en ce qui concerne notre étude (bien d’autres pathologies peuvent faire l’objet d’une étude statistique informatisée).

Les patients ont été suivis sur les plans clinique et paraclinique
— clinique : au début, en milieu et en fin de cure ;
— paraclinique : c’est-à-dire biologique (évolution de la vitesse de sédimentation, notion de groupage pour la recherche de l’Ag HLA B27...), et radiologique, afin d’assurer le diagnostic et de connaître le processus évolutif de l’affection.

Plusieurs paramètres ont été retenus, et ont servi à établir des tests
— tests sur séries appariées : SRIA ;
— tests de Wilcoxon ;
— tests du x².

Ces principaux paramètres ont été les suivants :

Signes généraux
Etat général, avec 3 ordres de grandeur
— bon : ou normal,
— moyen : altération de l’état général de moyenne gravité,
— mauvais : altération importante de l’état général.

Etat psychique
— bon : normal,
— moyen : épisodes dépressifs,
— mauvais : état dépressif quasi-constant.

Asthénie : présence ou non
Insomnie : présence ou non

Signes fonctionnels
Ils sont répartis en plusieurs stades :
— sacro-iliaque,
— lombaire,
— dorsal,
— cervical,
— périphérique.

Ils concernent :
— la présence ou non de douleurs,
— l’intensité de ces douleurs,
— l’ancienneté de ces douleurs.

Signes cliniques
Ils exploitent :
— le stade sacro-iliaque, par l’inspection et la palpation,
— les stades rochidien et thoracique, par l’inspection, la palpation et la prise de mesures telles que :
— l’indice de Schöber,
— la distance doigts-sol, genoux tendus,
— les périmètres inspiratoire et expiratoire,
— la distance menton-sternum,
— la distance occiput-mur.

Les soins effectués ont été les suivants :
— Bains: 49 prescriptions sur 50,
— Mobilisations actives en piscine thermale : 48 sur 50,
— Douches massages sous immersions de faible pression : 9 sur 50, de forte pression : 37 sur 50,
— Douches pénétrantes : 3 sur 50,
— Douches au jet : 1 sur 50,
— Buvette : 38 sur 50,
— Radiovaporarium : 45 sur 50,
— Douches locales et bains de boue locaux : membres supérieurs : 14 sur 50, membres inférieurs : 19 sur 50,
— Rédemption respiratoire : 1 sur 50.

* Station thermale de Gréoux-les-Bains, F-04600.
** Faculté de Médecine de Marseille.
*** Institut de recherches en thérapeutiques hydroclimatologiques et médicales. Faculté de Médicine de Marseille.

Pressée thermale et climatique, 1988, 125, no 5.
— Double handicap rhumatologie + voies respiratoires : 2 sur 50.

RÉSULTATS

En vue d’obtenir des résultats statistiques sur un nombre démonstratif de curistes, nous avons sélectionné les informations médicales les plus représentatives de la spondylarthrite ankylosante.

Ainsi se dresse un profil général et épidémiologique des 50 malades examinés :

Répartition en fonction de l’âge et du sexe

Age

L’âge s’échelonne entre 20 et 90 ans, avec un pic autour de la cinquantaine (âge moyen = 52 ans) (fig. 1).

Sexe

Parmi ces patients, 10 sur 50 sont des femmes, soit 20 p. cent de notre population de spondylarthritiques à Gréaux.

Ancienneté des douleurs

En moyenne, l’affection a débuté vers 35 ans et évolué pendant 17 ans (écart-type = 10,72) (fig. 2).

Moyenne = 17 ans, écart-type = 10,72.

De début plutôt progressif, la maladie s’exprime par poussées (59 %) des cas. Les douleurs sont vives, nécessitant la prise d’antalgiques et d’antiinflammatoires non stéroïdiens ; parfois même elles deviennent intolérables. Selon les critères de Merle d’Aubigné, les douleurs sont cotées de 0 à 5 :

— 0 : pas de douleur,
— 1 : douleur minime apparaissant seulement à l’occasion de certains mouvements ;
— 2 : douleur intermittente, effective, mais supportable ;
— 3 : douleur d’ancienneté moyenne, entraînant la prise de médicaments, se répétant souvent et parfois la nuit ;
— 4 : douleur vive à chaque mouvement, réveillant le malade, mal soulagée par les antalgiques banals ;
— 5 : douleur très violente, invalidante, permanente, entravant le sommeil malgré le traitement ; elle peut nécessiter la prise d’opiacés.

En début de cure, la plupart de nos patients présentaient des douleurs d’ancienneté 4.

La biologie révèle la présence de l’antigène HLA B27 dans 88 p. cent des cas (sur 34 groupages connus).

Radiologiquement, on note une sacro-iliaque de stade II prédominant (selon les critères de Forestier) (fig. 3).

La résultante des douleurs et de la gêne fonctionnelle associée entraîne une baisse de l’activité professionnelle, 20 p. cent des patients sont en régime d’invalidité.

Pourquoi la crénothérAPIe ?

Nombreuses sont les raisons qui poussent les malades à venir en cure, principalement :

— les bons résultats des cures antérieures,
— les conseils du corps médical,
— l’inefficacité relative de certains médicaments ou même leur contre-indication,

Fig. 1. — Répartition des curistes en fonction de l’âge.

Fig. 2. — Ancienneté des douleurs.

Fig. 3. — Répartition des curistes en fonction du stade de la maladie.

Presse thermale et climatique, 1986, 125, n° 5.
TABLEAU I. — Motivations de cure.

<table>
<thead>
<tr>
<th></th>
<th>Nbre curistes</th>
<th>%</th>
</tr>
</thead>
<tbody>
<tr>
<td>Bons résultats antérieurs</td>
<td>25/38</td>
<td>56 %</td>
</tr>
<tr>
<td>Conseils médecin</td>
<td>32/50</td>
<td>64 %</td>
</tr>
<tr>
<td>Souhait personnel</td>
<td>11/50</td>
<td>22 %</td>
</tr>
<tr>
<td>Médicaments insuffisants</td>
<td>10/50</td>
<td>20 %</td>
</tr>
<tr>
<td>Médicaments contre-indiqués</td>
<td>7/50</td>
<td>14 %</td>
</tr>
<tr>
<td>Diminuer les médicaments</td>
<td>14/50</td>
<td>28 %</td>
</tr>
<tr>
<td>Poursuivre une mobilisation active en piscine</td>
<td>26/50</td>
<td>52 %</td>
</tr>
</tbody>
</table>

Et, dans 52 p. cent des cas, il existe un désir de poursuivre une mobilisation active en piscine thermale (tableau I).

Evolution des douleurs pendant la cure

La crénothérapie à Gréoux permet d’obtenir une diminution importante des douleurs (intensités prédominantes en fin de cure : intensités 2), voire une séduction complète, avec disparition des intensités les plus douloureuses (intensités 5), ceci de façon hautement ou très hautement significative, et quels que soient les stades de la maladie : sacro-iliaque (p ≤ 0,02), lombaire (p ≤ 2,10^-5), dorsal (p ≤ 0,0013), cervical (p ≤ 0,01), ou périphérique (p ≤ 0,018).

Exemple : le stade lombaire : évolution des douleurs pendant la cure (tableau II).

Evolution des signes généraux pendant la cure

L’insomnie : 8 p. cent des malades seulement en fin de cure continuent à s’en plaindre, sur 35 p. cent en début de cure (p ≤ 0,01) (fig. 4).

De même, l’asthénie régresse de façon importante (tableau III) :

D’autre part les troubles psychiques, notamment les états dépressifs quasi-constants, disparaissent (tableau IV).

Étude des paramètres cliniques

Elle permet de confirmer ou de compléter ces données, de façon hautement significative ; ainsi l’indice de Schöber se trouve-t-il augmenté en moyenne de 0,7 cm et le périmètre inspiratoire de 2,6 cm. Les distances doigts-sol et occiput-mur, quant à elles se trouvent respectivement diminuées de 6,4 cm et de 1,4 cm (tableau V).
Bénéfices de la crénothérapie à plus long terme

- 76 p. cent des curistes porteurs de SPA ont déjà fait au moins une cure, et la moitié d'entre eux en est à sa quatrième (25/50).

- D'une année à l'autre, la maladie a été améliorée dans 50 p. cent des cas, stabilisée dans 38 p. cent des cas (fig. 5).

 Soit 88 p. cent de non aggravation.

- Des résultats subjectifs émis par les patients eux-mêmes montrent que la crénothérapie donne des :

 Bons ou très bons résultats sur :
 - l'état général : 77 p. cent,
 - la douleur : 81 p. cent,
 - le raideur : 72 p. cent.

- Le bénéfice global à long terme accordé ainsi par la crénothérapie à la pelvispondylite rhumatismale se répercute sur l'évolution de la consommation médicamenteuse d'une année à l'autre (fig. 6).

 Soit 85 p. cent de bons résultats.

C'est ainsi que nous pouvons affirmer que la crénothérapie est une thérapeutique efficace et bien tolérée, se doublant d'une action antalgique, générale et assouplissante. Introduction judicieusement et précocement dans l'arsenal thérapeutique de la Sp. A., et respectant ses contre-indications, elle permet d'enrayer ou atténuer une évolution parfois redoutable...

↓ Douleur
↓ Raideur
↓ Insomnie
↓ Asthénie
↑ Etat général
↑ Etat psychique

↓ Consommation médicamenteuse
↓ Evolution de la maladie

Succès dans plus des trois quarts des cas.
Funktionsänderungen bei Patienten mit Spondylitis ankylosans während Kurheilverfahren (Radon-Balneotherapie) in Badgastein

M. HEROLD, R. GÜNTER *
(Innsbruck)

Da eine kausale Behandlung derzeit nicht bekannt ist, beschränkt sich die Therapie auf die rein symptomatische Behandlung. Neben Antiphlogistika und Analgetika bildet die physikalische Therapie zur Schmerzlinderung und zur Erhaltung der Wirbelsäulenbeweglichkeit einen Behandlungsschwerpunkt. In Österreich haben sich Kuren im Thermalstollen von Badgastein-Böckstein in der Therapie der Bechterewskalen Erkrankung bewährt.

Der Stollen ist fast 2400 Meter lang. An seiner niedrigsten Stelle beträgt die Raumtemperatur etwa 14.5°C bei einer Luftfeuchtigkeit von ungefähr 95%. Der durchschnittliche Radongehalt der Luft liegt bei 129 Bq/l und ist damit etwa 10² bis 10³ mal höher als der Radongehalt der Luft über dem europäischen Festland. Die Ortsluft in Badgastein enthält 0.10 Bq/l. Den Faktoren Wärme, Luftfeuchtigkeit und erhöhte Radonkonzentration werden krankheitslindernde Wirkungen zugeschrieben [5].

Der Aufenthalt im Thermalstollen einschließlich der Ein- und Ausfahrt beträgt ungefähr 90 Minuten, davon 50 Minuten Liegezeit auf einer der vier verschiedenen warmen Stationen, von denen Station I 37.5°C und Station IV 41.5°C aufweist. Während des Aufenthalts im Thermalstollen steigt die Körpertemperatur durchschnittlich auf 38.6°C an. Im Laufe der dreiwöchigen Stollenufer fahren die Patienten 10 bis 12 mal in den Stollen ein, wobei zwischen zwei Stolleneinfahrten mindestens 1 stollenfreier Tag liegt.

Über die positive Wirkung der Stellentherapie hinsichtlich subjektiver Beschwerden und Funktionsseinbußen wurde mehrmals berichtet (7, 8, 11, 23). Radiologische Untersuchungen an Patienten, die regelmäßig zur Kur nach Gastein kamen, ergaben allerdings keinen Rückgang der Veränderungen an den Sacroiliakal- und Wirbelgelenken [2].

METHODIK

* Universität Innsbruck, Ordinariat für Physikalische Medizin und Ludwig Boltzmann Institut für angewandte Bäder- und Klimakurorte Gastein, Anichstraße 35, A-6020 INNSBRUCK (Osttirol).

ergebnisse

Bei unseren Patienten waren nur in Ausnahmefällen die Gelenke der unteren Extremitäten von Arthritis befallen, so daß die gemessenen Gehzeiten durchwegs den Gehzeiten von Normalpersonen entsprachen. Da wir aber beobach-

ten, daß die Gehzeit sehr gut die momentane Stimmung und das subjektive Wohlbefinden wiederspiegelt, haben wir die Messung der Gehzeiten, die wir ursprünglich zur Beurteilung der Arthritis bei Patienten mit rheumatoïder Arthritis in unsere Studien aufgenommen [4, 13], beibehalten. Die Gehzeiten weisen wie alle anderen Parameter darauf hin, daß die geringste Krankheitsaktivität in den Nachmittagsstunden vorliegt.

Auffallend waren die Ergebnisse, die sich bei der Berechnung der Tagesrhythmik der Lungenfunktionswerte ergaben. Während einzelne Patienten zum Teil völlig unterschiedliche Acrophasenlogen zeigten, konnten wir bei jenen drei Patienten, die zweimal in die Studie aufgenommen waren, fast identische Tagesrhythmen finden. Ähnlich wie für die maximale Flußrate, die in Abbildung 1 dargestellt ist, liegen die Acrophasenwerte der einzelnen Patienten auch für die forcierte Vitalkapazität [14] und für den Tiffeneau Wert.

Im Laufe der Kur zeigt sich eine Abnahme der Schmerzen (Abbildung 2) und offensichtlich damit verbunden eine Besserung der Stimmung (Abbildung 3). Man gewinnt den Eindruck, daß eine deutliche Besserung während der ersten Kurwoche auftritt, im Laufe der zweiten Kurwoche Schmerzen und Stimmung eher konstant bleiben und sich in der dritten Woche noch weiter bessern.

Weiters kommt es während der Kur zu einer ständigen Abnahme des Fingerbodenabstands (Abbildung 4).

Körpertemperatur, Puls und Blutdruck veränderten sich nicht im Kurverlauf.
DISKUSSION

Die Tagesrhythmik der Lungenfunktionswerte war für wenige Patienten deutlich verschieden als im Gruppen durchschnitt. Für die meisten Patienten war ein Tagesrhythmus nachweisbar, der entsprechend den übrigen Messwerten die besten Werte in den späten Nachmittagsstunden ergab. Für jene drei Patienten, die zweimal in die Studie aufgenommen waren, war die Tagesrhythmik gut reproduzierbar und weist darauf hin, daß bei Bechterew Patienten ein vorliegender Tagesrhythmus stabil bleibt.

Die vorliegenden Tagesrhythmen lassen auf eine tageszeitliche Abhängigkeit der Krankheitsaktivität schließen. Dies scheint auch von Bedeutung zu sein bei der Therapieanwendung. Für Medikamente konnte schon mehrmals nachgewiesen werden, daß der Zeitpunkt der Medikamenteneinnahme entscheidend den Therapieerfolg beeinflussen kann [22]. Während wir an Patienten mit rheumatoider Arthritis zeigen konnten, daß intramuskuläre ACTH-Gaben in den Abendsstunden eine deutlich höhere Cortisolausschüttung aus der Nebennierenrinde hervorrufen als in den frühen Morgenstunden [9, 12], konnten andere Arbeitsgruppen...
nachweisen, daß auch die Gabe von Antirheumatika in Abhängigkeit vom Zeitpunkt der Medikamenteneinnahme sowohl in ihrer Wirkung als auch in Bezug auf ihre Nebenwirkungen verlieren [18]. Unter der Annahme, daß den tageszeitlichen Schwankungen der Beschwerden bei der Becherweschekrankung eine Änderung der Entzündungssaktivität zugrunde liegt, muß man annehmen, daß es auch für die physikalische Medizin ebenso wie für die medikamentöse Therapie einen optimalen Zeitpunkt der Therapieanwendung gibt [6, 16, 17].

ZUSAMMENFASSUNG

LITERATUR

La spondilite anchilosante

C. ARENA *
(Cosemza)

Riportiamo il risultato di una indagine da noi eseguita su di un gruppo di soggetti che, affetti da spondilite anchilopatieca, sono stati sottoposti, negli anni 1979/85, a più cicli di cronolilterapia solfurea.

La cura è stata eseguita in una stazione termale dello estremo sud di Italia, in Calabria: alle Terme Luigiane. La mineralità di questo luogo di cura è rappresentata da una acqua minerale solfurea salso bromo iodica, ipertermale.

L'acqua minerale sorga, allo stato naturale, da quattro sorgenti:
— ad una temperatura oscillante fra i 18 e i 47 gradi;
— con una portata media di 130/160 litri al secondo.

Variazioni di portata e di temperatura sono minime: se infatti una certa variabilità di portata è registrabile per l'acqua ipotermale in rapporto alla pluviosità, tanta non avviene per l'acqua delle polle calde, testimonia benefica di provenienza da falde profonde. Caratteristiche proprie di queste acque sono:
— la supermineralizzazione;
— la scarsa umidità;
— la ricchezza di flora solfurea.

Per quanto riguarda la mineralizzazione ricordiamo:
— il residuo secco a 180° gr. 4,675, e;
— il grado sólidrometrico pari a 173 mg/lt.

La ricchezza di idrogeno solforato contenuto nella acqua permette un trattamento sulfureo intensivo e completo, anche perché una considerevole porzione di idrogeno solforato è legato a solfuri e solfidati, il che consente allo idrogeno solforato stesso una maggiore stabilità e la possibilità di liberarsi lentamente, favorendo una azione più prolungata ed intensa, ma meno violenta di cura.

Per quanto riguarda l'umidità ricordiamo che la sua scarsità secondaria certamente alla felice ubicazione e al contorno ecologico, favorisce la dispersione di quel calore che ogni cura comporta sul nostro organismo, con il chiamare in causa meccanismi termoregolatori, quali la perspirazione, insensibilis e la sudorazione, indispensabili per fronteggiare la nuova condizione circostante prodotta dal calore stesso.

Per quanto riguarda la vegetazione spontanea che vive abbondante in queste acque, ricordiamo:
— il potere delle Alghe Cianofiche di fissare le qualità tipiche dello zolfo, divenero dei microorganismi solforati.

A completamento della breve illustrazione delle caratteristiche della stazione termale, dobbiamo solo aggiungere che lo scopo terapeutico viene raggiunto con l’impiego delle acque minerali che dalle scaturigini sono convogliate:

— ai due Stabilimenti termali (Termé Nuove e S. Francesco) per un indirizzo cronoterapico diretto a patologie dello apparato locomotore, dello apparato respiratorio, dello apparato di ORL, dello apparato ginecologico, della pelle;
— alle vasche di maturazione dei frutti e allo impianto di cultura delle alghe.

Le due strutture necessitano costantemente e per tutto l’anno di alimentazione di acqua termale, per portare a termine i processi biologici della maturazione e della riproduzione, strettamente legati e tendenti alla nascita del caratteristico nostro Peloide.

— alla piscina termale che per essere ad acqua fluente necessita di continuo rifornimento di acqua minerale.

In questo ambiente termale e con l’uso terapeutico di queste acque o dei mezzi fisici da esse prodotte, noi abbiamo curato 18 soggetti affetti da spondilite anchilopatia.

Per la maggior parte la osservazione si è protratta per almeno tre anni consecutivi (soggetti sottoposti a cure termali per più stagioni), per altri la indagine è stata limitata ad un solo anno di valutazione clinica.

In riferimento alla prevalenza e alla etiologia della malattia, abbiamo constatato che il rapporto tra uomini e donne, oggi stimato di 10 a 1, è stato nella nostro indagine superato: dei 18 soggetti in cura, 17 erano infatti uomini e 1 donna. Per quanto riguarda la etiologia, non abbiamo potuto verificare, anche perché non era nostro specifico interesse, la percentuale di prevalenza dello antigeno leucocitario umano, HLA B27, nei soggetti in cura. Ci siamo però convinti di una ereditarietà multifattoriale con possibili fattori ambientali (tipo infezioni genitali urogenitali e intestinali) che abbiamo potuto agire come fattori scatenanti in soggetti geneticamente predisposti.

La nostra zona è infatti ricca di infezioni parasitarie intestinali, e la maggior parte dei soggetti in cura ne ha denunciato dati anamnestici positivi.

Comunque in nessuno dei soggetti è stato isolato nelle feci la Klebsiella che Ehringer riferisce presente nelle feci dei due terzi dei pazienti in riacutizzazione e in un terzo dei controlli.

In riferimento allo andamento clinico della malattia che i nostri soggetti avevano avuto, possiamo dire:
— il 50% dei soggetti in cura (cioè n. 9), presentavano un interessamento lieve (sviluppavano cioè solo mal di schiena lentamente progressivo e rigidi con lieve limitazione funzionale);
— il 39% dei soggetti in cura (cioè n. 7) presentavano un interessamento di media gravità (sviluppavano cioè con clamore la lombalgia con periodi alterni di escacerbazioni e remissioni; apprezzabile limitazione dei movimenti; interessamento unilaterale delle articolazioni periferiche; limitazione evidente della espansione toracica);
— l’11% dei soggetti in cura (cioè n. 2), presentavano un interessamento grave. (La evoluzione era stata favorevole fin dallo esordio della malattia con grave limitazione e invalidità permanente).

Presses thermale et climatique, 1988, 125, n° 5.
A tutti, di età compresa fra i 26 e 55 a. sono stati eseguiti, allo inizio, a metà, e alla fine della cura termale,
— rilievi di laboratorio;
— rilievi clinici.

Scontata la negatività del fattore reumatoide e del fattore anti-nucleare, abbiamo controllato l’andamento dei valori entrosedimentometrici, ed abbiamo verificato la eventuale variazione di alcuni parametri fisici, quale il grado di flessione del tronco (mani/suolo e segno di Schoeber) e di espansione del torace.

In riferimento al trattamento termale avevamo tenuto conto di molti lavori che ne riferivano tolleranza e benefici (Forestier e Rubens-Duval, Coste, Lemoch, Giordano, Tirri, Messina, Bagnères, Desze, Peyron).

E’ vero infatti che nei reumatismi infiammatori le cure termali non sono sempre indicate e vanno praticate con la massima cautela, ma è anche vero che la spondilite Anchiopoiatica ha una buona tolleranza per la cranoterapia e il beneficio che ne ricava, spesso soddisfacente, è certamente legato alle caratteristiche del processo infiammatorio, solitamente a lento decorso, che colpisce particolarmente le cartilagini delle articolazioni diartrodiali serrate (sacroiliache, costovertebrali, sternocostali).

La cranoterapia infatti oltre a influire sulla contrattura muscolare e sulla elasticità dei legamenti, agisce, verosimilmente, sugli alterati processi biochimici della cartilagine, migliorandone il trofismo (Peyron).

Il nostro trattamento termale è consistito in 12 fontature quotidiane (interrappolate da un giorno di riposo settimanale) a tutto il rachide e talora anche alle articolazioni rizomeliche, seguito da bagno in vasca di acqua minerale ipertermale.

Alla fontaterapia è sempre seguita: massoterapia cauta, rieducazione funzionale, kinesiterapia respiratoria. A volte, quando le condizioni generali la disponibilità del soggetto lo consentivano, la cranoterapia si è prolungata con idrokinesiterapia in piscina. La fontaterapia è stata eseguita alla temperatura di 45°/48° e per 15/20 m'. La balneoterapia alla temperatura di 39°/40° e per la durata 15/20 m'. La temperatura dell'acqua termale in piscina oscillava da 28° a 33°. La temperatura dei cameroni di cura era costantemente mantenuta da 26° a 28°.

Della indagine, durata in alcuni casi più anni, per essersi il soggetto sottoposto a più cicli di cura, ne è stato valutato l’effetto terapeutico a fine cura e a distanza.

A fine cura certamente positivo il risultato sulla cenestesi; spesso buono sui dolori, e anche spesso sulla rigidità articolare. Lo dimostrano i rilievi clinici eseguiti:
— La distanza mani/suolo in molti casi si è ridotta;
— La flessibilità toracica è spesso aumentata (maggiore di 3 cent.);
— Il segno di Schoeber ha fatto rilevare spesso un aumento di 4 cent. alla misurazione tra i punti di repere assegnati, nella flessione del tronco.

L’effetto terapeutico a distanza è stato più breve per soggetti senza copertura medrarentosa; più duraturo (anche un anno) per quelli in cura domiciliare antiflogistica anche se a piccole dosi o saltuaria. In conclusione possiamo dire che la terapia termale, nella spondilite anchiopoiatica trova una collocazione se giudiziosamente consigliata. Condotta con prudenza e ben sorvegliata, e se è anche associata a morbidiche fisioterapie e riabilitazioni, può contribuire al miglioramento e alla riabilitazione funzionale del malato.

RIASSUNTO

L’Autore, dopo aver brevemente illustrato le caratteristiche dell’acqua minerale ove è stata eseguita la ricerca, (Terme Luigiane - Calabria, Italia - acqua sulfuree-salsobromoidiche - ipertermali - grado solfidrometrico 173 g/l) - riferisce di 18 casi di spondilite anchilosante - trattata con cranoluto-terapia e per più cicli. Ne riporta i benefici curativi riguardanti la sintomatologia dolorosa, la rigidità, le indagini bioumorali, concludendo che la terapia termale, se condotta con prudenza e ben sorvegliata, è molto ben tollerata dallo ammalato di spondilite anchilosante se in fase di scarsa attività flogistica.

In associazione ad altre terapie farmacologiche e fisioterapie, certamente contribuisce al miglioramento e alla riabilitazione funzionale delle malattie reumatiche.
Le rôle de la balnéothérapie complexe
dans le traitement de la polyarthrite chronique évolutive

Résumé

J. SIMEK *

La balnéothérapie occupe un rôle important dans le traitement de la polyarthrite rhumatoïde. Pour arriver à un traitement plus efficace, il est important d'établir le suivi systématique d'un médecin-rhumatologue, ainsi que la collaboration active du malade. Le but de la pharmacothérapie est la suppression de l'activité inflammatoire et de l'évolution de la maladie. Le but de rééducation fonctionnelle, qui forme une part très importante d'une cure, est la restitution sociale.

La balnéothérapie complexe allie l'effet pharmacothérapeutique avec l'efficacité des méthodes physiothérapeutiques naturelles et de la kinésithérapie avec l'influence positive du milieu d'une station thermale. Avant tout, c'est la capacité fonctionnelle et l'état psychique du malade qui sont influençés par une cure.

L'auteur rapporte les expériences et les résultats du traitement balnéaire chez 784 souffrants d'arthrite rhumatoïde, traités aux Thermes Trancianske Teplice.

Les algodystrophies à Gréoux-les-Bains
Résultats de 40 observations

J. TATOSSIAN **, R. BARTOLIN **, C. DELBOY **

(Gréouls-les-Bains, Marseille)

Si les incertitudes diagnostiques concernant l'entité nosologiques des algodystrophies sont dissipées, il n'en est pas de même pour les démarches thérapeutiques qui ont fait appel à des médications et des traitements physiques successifs, au point de laisser à la crénothérapie une place toujours prééminente.

Par ailleurs, la traumatologie moderne, comme la chirurgie orthopédique, qui peut en résulter, fournit un contingent régulier de malades ayant recours aux cures thermales.

Il est donc apparu utile de faire figurer ce chapitre pathologique dans l'étude statistique informatisée actuellement opérationnelle à Gréoux. Pour ce faire, nous avons intégré dans le dossier médical informatisé un chapitre spécialement conçu, et nous avons testé la validité de ce satellite à partir de 40 observations.

Conscients des difficultés à intégrer dans une observation type, une affection aussi polymorphe dans sa symptomatologie et son évolutivité, nous nous sommes efforcés d'en isoler les éléments les plus déterminants, acceptant d'avance d'en combler les insuffisances à la lumière des suggestions et des critiques.

MÉTHODOLOGIE

Nous rappellerons brièvement les méthodes statistiques utilisées, par ailleurs développées dans d'autres communications spécifiques :

— devant l'impossibilité en milieu thermal de constituer des lots comparables « témoins » et « traités », et de faire appel notamment à la méthode du « double aveugle », nous avons recours à la technique des séries appariées (SRIA) pour exploiter les données chiffrées alors que les données codées résultant, en particulier de la symptomatologie fonctionnelle sont appréciées par le test de Wilcoxon ;
— en pratique le clinicien est donc amené à collecter
tous les éléments de son observation sur une série de
fiches rassemblées en dossier dont la saisie informatique
est immédiate.

PRÉSENTATION DU DOSSIER MÉDICAL INFORMATISÉ

Constitution du dossier
Rappelons la constitution du dossier complet établi pour
echaque observation retenue dans notre étude :
— un dossier base rassemblant les données invariables
pour toutes les curés à venir comme le sexe, l’âge, le nombre
de curés antérieures, les antécédents ;
— un premier satellite individu qui réunit les données
générales : profession, activité sportive, qualification du mé-
decin traitant, résultat des curés précédentes ;
— un deuxième satellite maladie qui renseigne sur l’évo-
lution de l’affection ayant entraîné la cure, ainsi que les au-
tres traitements mis en œuvre ;
— un troisième satellite soins qui énumère en détail les
prescriptions thermales et leur tolérance ;
— enfin, le satellite spécifique de l’affection en cause, en
l’occurrence l’algodystrophie, qui vise à transcrire fidèlement
les éléments significatifs de l’observation lors de l’examen
initial, puis à mi-cure, à la fin de la cure, et après 3 mois
de recul.

Présentation du Dossier
Sur support papier, il a été conçu de manière à être
directement accessible à tout clinicien désireux de quantifier
les résultats de son observation :
— codification des différentes articulations étudiées ;
— pour chaque articulation, les symptômes sont appré-
ciés sur une échelle de 0 à 5, tels que douleur, gêne
fonctionnelle, coloration tégumentaire ;

Les données mesurables sont elles-mêmes transcries en
chiffres, telles que circonférence articulaire, ou tension
articulaire.

— En fait, le problème essentiel posé, reste celui du
choix des données à recueillir : la conception d’un tel docu-
ment implique un balancement entre la volonté de réunir
le maximum de renseignements, et la nécessité d’aboutir à un
produit simple, aisément reproductible, à l’abri des variations
subjectives de chaque examinateur.

L’expérience nous a rapidement amené à intégrer les
eléments suivants comme nécessaires et apparemment suf-
sisants :
• état général ;
• signes fonctionnels :
 — douleur articulaire,
 — gêne fonctionnelle ;
• signes physiques :
 — stade évolutif,
 — tuméfaction articulaire,
 — température cutanée,
 — coloration cutanée,
 — raideur articulaire,
 — troubles trophiques : fibrose-rétraction,
 — tension articulaire ;
• éléments paracliniques :
 — radiologie,
 — scintigraphie osseuse,
 — thermographie,
 — biologie : vitesse de sédimentation, liquide synovial :
 protéines, cytologie, hydroxyprolinurie des 24 h ;
• circonstances étiologiques :
 — algodystrophie secondaire à une affection : chirur-
gicale, médicale, iatrogène,
 — algodystrophie primitive : terrain prédisposé.

Cet ensemble constituant une grille d’examen, répétée
au début et à la fin de la cure, avec un volet de mi-cure
destiné à relever les incidents du traitement thermal.

Enfin, une fiche de liaison remise au curiste est destinée
t être renseignée par le médecin traitant après 3 mois
d’évolution :

Elle porte sur :
— l’état général,
— le syndrome douloureux,
— la gêne fonctionnelle,
— l’aspect de la région atteinte,
— le poids, la tension artérielle,
— la consommation médicamenteuse,
— l’incidence sur l’absentéisme professionnel,
— une appréciation globale sur l’efficacité de cette
cure et sur l’opportunité d’une nouvelle cure.

Nous sommes conscients des nombreuses lacunes de ce
dispositif et de son caractère éminemment perfectible : il
a toutefois le mérite d’être rapidement mis en œuvre par
des « non spécialistes » et d’être en mesure dès les
premières séries de malades étudiés, d’apporter des ren-
seignements sur la validité du traitement thermal (tableaux
I, II, III).

LA CRÉNOTHERAPIE DES ALGODYSTROPHIES
À GREOUX-LES-BAINS

Les techniques thermales sont adaptées à la phase
evolutive de la maladie :
— A la « phase chaude » : la cure se limite le plus sou-
vient à une balnéation en eau courante, avec mobilisation
prudente et progressive des segments atteints, les pratiques
complémentaires, telles douches sous immersion, douche
pénétrante sont introduites en fonction de l’amélioration
constatée. Les caractéristiques hydrothermales des eaux de
Gréoux-les-Bains contribuent à consolider les résultats dans
le temps.

— A la « phase froide », la rééducation active s’impose
sous forme de mobilisation en piscine guidée par un kinési-
thérapeute, associée aux douches sous immersion, trombes
hydrothermales et selon la localisation, manu et pédi-douches
suites de bains de boue.

— A la « phase séquelles », l’ensemble de l’arsenal
hydrothermal est utilisé, outre les pratiques de balnéation,
on fait appel aux différentes douches :
 — percutante au jet,
 — pénétrante générale,
 — locale des membres,
 — sous immersion à différentes pressions
associées aux massages manuels sous l’eau, bains de boue
et mobilisations active en piscine.

Toutes ces modalités de traitement sont notées au sein
du satellite n° 3 « Soins » ainsi que leur tolérance, et si
nécessaire, les modifications en cours de cure (tableau IV).
RÉSULTATS

A partir de 40 premiers cas, il nous est possible de donner une première appréciation de la validité de la Crénomécanique au cours des algodystrophies.

Vous n'avez retenu pour la clarté de l'exposé que les paramètres les plus significatifs, concernant :

- l'épidémiologie : sexe, âge, topographie et circonstances étiologiques ;
- le bilan clinique initial :
 1. A. Signes généraux :
 - État général : Coder = bon
 - État psychique : en cm (140 à 190 cm)
 - Taille : en kg (45 à 110 kg)
 - Poids :
 1. B. Signes fonctionnels :
 - Gêne fonctionnelle de 0 à 5 :
 - Coder : Douleur de 0 à 5 :

TABLEAU II.

<table>
<thead>
<tr>
<th>Code</th>
<th>Droite</th>
<th>Gauche</th>
<th>Ancienneté</th>
<th>Douleur de 0 à 5</th>
<th>Gêne de 0 à 5</th>
</tr>
</thead>
<tbody>
<tr>
<td>1 épaule</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2 coude</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>3 poignet</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>4 main</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>5 hanche</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>6 genou</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>7 cheville</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>8 pied</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

1. C. Examen clinique :
 1) Stade évolutif :
 - Phase chaude froid

2) Tuméfaction :
 a) article de référence (code)
 b) circonférence (en cm)

3) Température cutanée :
 coder : de -5 à -1 froide
 de 0 à +5 chaud

4) Coloration :
 coder : de 0 à 5
 - pâleur
 - érythrose
 - cyanose

TABLEAU III.

<table>
<thead>
<tr>
<th>Technique de cure</th>
<th>Nombre de séances prescrites</th>
<th>Nombre de séances effectives</th>
<th>Tolérance</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td>1 = Bonne</td>
</tr>
<tr>
<td>Bains</td>
<td></td>
<td></td>
<td>2 = Moyenne</td>
</tr>
<tr>
<td>Massages sous l'eau</td>
<td></td>
<td></td>
<td>3 = Mauvaise</td>
</tr>
<tr>
<td>Douche au jet</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Douches massages sous immersion</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Douches pénétrantes</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Trombes hydromé- rales</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Mobilisation active en piscine</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Buvette</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Manidouches avec mobilisation active (boue)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Pédidouches avec pédifoulage actif (boue)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Illations</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Traitements annexes prescrits :

- Repos obligatoire
- Exercice physique
- Régime diététique

Traitement médicamenteux prescrit en cours de cure

Effectivement suivi

Autres :

- les modifications en cours de cure :
 1) de la douleur,
 2) de la gêne fonctionnelle,
 3) de la tuméfaction locale,
 4) de la coloration tégumentaire,
 5) de la raideur articulaire,
 6) de la fibrose locale;
- la fréquence des signes radiologiques;
- la tolérance de la cure;
- les résultats à moyen terme (3 mois).
Epidémiologie

Ce qui caractérise l'échantillon des cas d'Algodystrophies traitées à Gréoux-les-Bains, c'est la prééminence du sexe féminin (87,5 %) et l'âge, supérieur à 50 ans (85 %).

Quant à la topographie, elle est essentiellement périphérique, touchant à 76,5 p. cent les mains, les chevilles et les pieds. On retient enfin l'importance du geste thérapeutique (plâtre, ostéosynthèse) dans les circonstances étiologiques (87 %) (fig. 1 et 2).

Modifications en cours de cure

Modification de la douleur

Etant considéré le nombre relativement réduit des dossiers exploités, il nous est possible de présenter 2 exemples de localisation statistiquement exploitables.

— 9 cas d'algodystrophies de la main gauche,
— 10 cas d'algodystrophies de la cheville droite.

La douleur ayant été côtée de 0 à 5 (néant à intense) on obtient dans le premier cas (mains), un résultat significatif et dans le deuxième (cheville) un résultat très significatif par le test de Wilcoxon (tableau V).

Il en est de même pour la gêne fonctionnelle (tableau VI).

Modification de la tuméfaction locale (tableau VII)

Elle est appréciée par le périmètre articulaire, mesuré en centimètres, permettant le recours au test SRIA (séries appariées), qui se révèle très significatif.

Modification de la coloration tégumentaire (tableau VIII)

Nous avons choisi d'exploiter plus spécialement le degré d'érythrose en période chaude, ainsi que la pâleur en période froide, toujours au moyen d'une cotation de 0 à 5. Dans les deux cas, l'amélioration de ces 2 symptômes est hautement significative.

Modification de la raideur articulaire (tableau IX)

Elle est mesurée en degrés, selon les 3 couples de mouvements :

— flexion - extension,
— abduction, adduction,
— rotation externe - rotation interne

sur l'ensemble des articulations concernées.

L'exploitation statistique par le test SRIA révèle un gain très significatif pour chacun de ces mouvements, à l'exception de l'extension (p<0,10) : l'explication nous paraît être le nombre encore trop réduit de dossiers analysés.

Modification de la fibrose locale (tableau X)

Corollaire des gains en mobilité, l'évolution de la fibrose péri-articulaire renseigne bien sur l'efficacité de la Crénothérapie ; l'intensité de ce symptôme, appréciée sur une échelle de 0 à 5 est ici diminuée de façon très significative.

Fréquence des signes radiologiques

La radiologie vient compléter le tableau clinique, et confirmer le stade évolué ; nous retenons sur 30 observations, l'importance de l'hypertransparence osseuse loco-régionale diffuse (fig. 3).

Tolérance du traitement thermal

Nous notons une recrudescence des douleurs dans 1 cas sur 3 et une accentuation de la fatigue générale dans 1 cas sur 5 (fig. 4).

La prescription des techniques thermales a pu être maintenue dans la majorité des cas (9 fois sur 10), moyennant de rares prescrictions médicamenteuses (3 cas).

La tolérance de la cure crénothérapeutique de Gréoux-les-Bains apparaît donc comme particulièrement satisfaisante, dans ce type d'affection.

Presser thermale et climatique, 1988, 125, no 5.
TABLEAU V.
Intensité de la douleur.

<table>
<thead>
<tr>
<th>Algodystrophies main gauche (eff. 9)</th>
<th>Algodystrophies cheville droite (eff. 10)</th>
</tr>
</thead>
<tbody>
<tr>
<td>INTEGNE DE COUPEUR</td>
<td>INTEGNE DE COUPEUR</td>
</tr>
<tr>
<td>0 1 2 3 4 5</td>
<td>0 1 2 3 4 5</td>
</tr>
<tr>
<td>début</td>
<td>début</td>
</tr>
<tr>
<td>1,0 0 0 0 0</td>
<td>1,5 0 0 0 0</td>
</tr>
<tr>
<td>fin de cure</td>
<td>fin de cure</td>
</tr>
<tr>
<td>0 1 0 0 0</td>
<td>1,3 3 0 0 0</td>
</tr>
</tbody>
</table>

Test de Wilcoxon

<table>
<thead>
<tr>
<th>Algodystrophies main gauche</th>
<th>Algodystrophies cheville droite</th>
</tr>
</thead>
<tbody>
<tr>
<td>moyenne</td>
<td>moyenne</td>
</tr>
<tr>
<td>2,00</td>
<td>2,00</td>
</tr>
<tr>
<td>écart-type</td>
<td>écart-type</td>
</tr>
<tr>
<td>0,00</td>
<td>0,00</td>
</tr>
<tr>
<td>S.R.I.R.</td>
<td>S.R.I.R.</td>
</tr>
<tr>
<td>12</td>
<td>10</td>
</tr>
<tr>
<td>p=0,01</td>
<td>p=0,007</td>
</tr>
</tbody>
</table>

TABLEAU VI.
Gêne fonctionnelle.

<table>
<thead>
<tr>
<th>Algodystrophies main gauche (eff. 9)</th>
<th>Algodystrophies cheville droite (eff. 10)</th>
</tr>
</thead>
<tbody>
<tr>
<td>FONCTIONNELLE</td>
<td>FONCTIONNELLE</td>
</tr>
<tr>
<td>0 1 2 3 4 5</td>
<td>0 1 2 3 4 5</td>
</tr>
<tr>
<td>début</td>
<td>début</td>
</tr>
<tr>
<td>1,15 0 0 0 0 0</td>
<td>1,5 0 0 0 0</td>
</tr>
<tr>
<td>fin de cure</td>
<td>fin de cure</td>
</tr>
<tr>
<td>1,0 1 0 0 0</td>
<td>1,3 3 1 0 0</td>
</tr>
</tbody>
</table>

Test de Wilcoxon

<table>
<thead>
<tr>
<th>Algodystrophies main gauche</th>
<th>Algodystrophies cheville droite</th>
</tr>
</thead>
<tbody>
<tr>
<td>moyenne</td>
<td>moyenne</td>
</tr>
<tr>
<td>0,00</td>
<td>0,00</td>
</tr>
<tr>
<td>écart-type</td>
<td>écart-type</td>
</tr>
<tr>
<td>0,00</td>
<td>0,00</td>
</tr>
<tr>
<td>S.R.I.R.</td>
<td>S.R.I.R.</td>
</tr>
<tr>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>p=0,01</td>
<td>p=0,007</td>
</tr>
</tbody>
</table>

TABLEAU VII.
Touréfaction locale

<table>
<thead>
<tr>
<th>Lamellaire articulaire en cm</th>
</tr>
</thead>
<tbody>
<tr>
<td>Algodystrophies main gauche (eff. 13)</td>
</tr>
<tr>
<td>PÉRIMÈRE</td>
</tr>
<tr>
<td>début</td>
</tr>
<tr>
<td>17,07</td>
</tr>
<tr>
<td>ÉCART-TYPE</td>
</tr>
<tr>
<td>1,60</td>
</tr>
<tr>
<td>S.R.I.R.</td>
</tr>
<tr>
<td>n=12</td>
</tr>
<tr>
<td>ER=11,05</td>
</tr>
<tr>
<td>p=0,01</td>
</tr>
</tbody>
</table>

Test de Wilcoxon

<table>
<thead>
<tr>
<th>Algodystrophies main gauche</th>
<th>Algodystrophies cheville droite</th>
</tr>
</thead>
<tbody>
<tr>
<td>moyenne</td>
<td>moyenne</td>
</tr>
<tr>
<td>17,07</td>
<td>24,75</td>
</tr>
<tr>
<td>écart-type</td>
<td>écart-type</td>
</tr>
<tr>
<td>1,60</td>
<td>2,86</td>
</tr>
<tr>
<td>S.R.I.R.</td>
<td>S.R.I.R.</td>
</tr>
<tr>
<td>n=12</td>
<td>n=11</td>
</tr>
<tr>
<td>ER=11,05</td>
<td>ER=5,56</td>
</tr>
<tr>
<td>p=0,01</td>
<td>p=0,01</td>
</tr>
</tbody>
</table>

TABLEAU VIII.
Coloration tégumentaire.

<table>
<thead>
<tr>
<th>ERYTHROSE (eff.10)</th>
<th>TEST DE WILCOXON</th>
</tr>
</thead>
<tbody>
<tr>
<td>début</td>
<td>fin</td>
</tr>
<tr>
<td>21,15</td>
<td>6,5</td>
</tr>
<tr>
<td>S.R.I.R.</td>
<td>S.R.I.R.</td>
</tr>
<tr>
<td>n=18</td>
<td>n=19</td>
</tr>
<tr>
<td>T=E</td>
<td>T=E</td>
</tr>
<tr>
<td>p<0,01</td>
<td>p<0,01</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>FRÉLUR (eff.30)</th>
<th>TEST DE WILCOXON</th>
</tr>
</thead>
<tbody>
<tr>
<td>début</td>
<td>fin</td>
</tr>
<tr>
<td>20,7</td>
<td>28,9</td>
</tr>
<tr>
<td>S.R.I.R.</td>
<td>S.R.I.R.</td>
</tr>
<tr>
<td>n=33</td>
<td>n=19</td>
</tr>
<tr>
<td>T=E</td>
<td>T=E</td>
</tr>
<tr>
<td>p<0,01</td>
<td>p<0,01</td>
</tr>
</tbody>
</table>

TABLEAU IX.
Rompeur articulaire

<table>
<thead>
<tr>
<th>Poignets (eff. 13)</th>
<th>Poignets (eff. 13)</th>
</tr>
</thead>
<tbody>
<tr>
<td>début</td>
<td>fin</td>
</tr>
<tr>
<td>flexion</td>
<td>extens</td>
</tr>
<tr>
<td>25,7</td>
<td>20,54</td>
</tr>
<tr>
<td>S.R.I.R.</td>
<td>S.R.I.R.</td>
</tr>
<tr>
<td>n=12</td>
<td>n=12</td>
</tr>
<tr>
<td>ER=2,07</td>
<td>ER=1,86</td>
</tr>
<tr>
<td>p=0,05</td>
<td>p=0,08</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Polaire (eff. 13)</th>
<th>Polaire (eff. 13)</th>
</tr>
</thead>
<tbody>
<tr>
<td>début</td>
<td>fin</td>
</tr>
<tr>
<td>adduct.</td>
<td>adduct.</td>
</tr>
<tr>
<td>5,6</td>
<td>6,63</td>
</tr>
<tr>
<td>S.R.I.R.</td>
<td>S.R.I.R.</td>
</tr>
<tr>
<td>n=11</td>
<td>n=11</td>
</tr>
<tr>
<td>ER=2,01</td>
<td>ER=4,44</td>
</tr>
<tr>
<td>p=0,01</td>
<td>p=0,01</td>
</tr>
</tbody>
</table>

TABLEAU X.
Troubles trophiques.

<table>
<thead>
<tr>
<th>LÉ FIBROSE OCÉALE (eff.10)</th>
<th>TEST DE WILCOXON</th>
</tr>
</thead>
<tbody>
<tr>
<td>début</td>
<td>fin</td>
</tr>
<tr>
<td>3,6</td>
<td>6,16</td>
</tr>
<tr>
<td>S.R.I.R.</td>
<td>S.R.I.R.</td>
</tr>
<tr>
<td>n=33</td>
<td>n=33</td>
</tr>
<tr>
<td>T=10,50</td>
<td>T=5,90</td>
</tr>
<tr>
<td>p<0,01</td>
<td>p<0,01</td>
</tr>
</tbody>
</table>

Presso therma et climatique, 1986, 125, n° 5.
Appréciation de l’efficacité 3 mois après la fin de la cure

Les données recueillies à partir de la fiche de liaison établie par le médecin traitant, permettent de mesurer le caractère durable des améliorations obtenues (fig. 5) :
— sans compter avec l’état général qui reste toujours amélioré, nous notons le gène persistant de l’intensité des douleurs et de la gêne fonctionnelle (77 %) ;
— l’aspect de la région atteinte rejoint la normale dans 3 cas sur 4 ;
— la consommation médicamenteuse a été stoppée, soit franchement diminuée dans 80 p. cent des cas, l’absentéisme professionnel étant également réduit dans les mêmes proportions.

CONCLUSIONS

Au total, l’appréciation globale sur l’efficacité thérapeutique de cette cure est favorable dans 94 p. cent des cas, et c’est avec la même fréquence que les curistes souhaitent renouveler ce traitement si nécessaire (fig. 6).

La constatation globale qui se dégage dans ces différentes données nous semble être reflétée par l’analyse de ce tableau sur les stades évolutifs.
On remarque une amélioration de l’évolution de l’algodystrophie en cours de cure, se caractérisant par un « refroidissement » plus rapide des lésions chaudes, qui passent de 40 à 25 p. cent des cas, alors que les lésions froides augmentent dans les mêmes proportions.

Par contre, les lésions de type séquellaire, de l’ordre de 15 p. cent des cas restent en l’état, l’amélioration portant uniquement sur les signes fonctionnels.

S’il nous est permis de conclure, à partir de cette première série 40 observations, c’est en affirmant que la Crénothérapie, notamment à Gréoux-les-Bains, constitue encore de nos jours, une technique thérapeutique tout à fait valable.

En l’absence de substance médicamenteuse efficace dès le stade initial, l’affection évolue en effet selon un cycle inéluctable ; le traitement thermal vient dans tous les cas en accélérer le déroulement, la rendant ainsi moins invasivante et permettant une réhabilitation fonctionnelle plus rapide des régions touchées.

La méthodologie informatique adoptée à Gréoux-les-Bains doit permettre d’objectiver de façon plus formelle cette efficacité thérapeutique. Si l’outil mis en place reste éminemment perfectible, il a le mérite, au moins, d’ouvrir une voie riche de promesses.

Etude et devenir de 487 cas de gonarthrose sur dossiers informatisés à Gréoux-les-Bains

D. REKASSA *, C. PEYROTTE, B. ASTIER, A. REKASSA-PROVOST, F. WIDEMANN *,
(Gréoux-les-Bains, Marseille)

MÉTHODOLOGIE

Nous avons colligé 487 observations de malades gonarthroïques ayant effectué leur cure à Gréoux-les-Bains. Ce travail est basé sur des dossiers informatisés mis au point avec le concours du Service Universitaire de Thérapeutique et d’Hydrologie et Climatologie médicales (Pr C. Delboy) et du Service de Biomathématiques, Statistiques et Informatique Médicale de la Faculté de Médecine de Marseille (Pr M. Roux).

Principes de l’essai thérapeutique

La constitution de lots comparables de « témoins » et de « sujets traités » est pratiquement impossible. L’emploi de placebos et de la méthode en double aveugle ne peut pas pour l’instant être envisagée. Chaque malade est son propre témoin et nous avons donc utilisé la méthode des séries appariées : le test SRIA et le test de Wilcoxon.

— Le test SRIA compare les moyennes de deux variables quantitatives ou numériques au sein d’un même ensemble de dossiers ;

— Le test de Wilcoxon compare deux variables codées dans un même sous-ensemble, à partir d’histogrammes de distribution.

Choix des critères de l’état pathologique

Nous avons insisté sur certains paramètres mesurables et par conséquent objectifs, tout en tenant compte par ailleurs des critères subjectifs fournis par le malade, seul véritable juge de son « confort de santé ».

Contraintes de forme

Elles sont imposées par le système d’informatisation et reposent sur un « support-papier » répondant à trois exigences :

1) clarté de présentation et rapidité d’exécution ;
2) pertinence sémantique ;
3) facilité d’utilisation.

L’étude a été réalisée sur le système SYCVAR implanté sur l’ordinateur MINI 6 du service d’informatique de la faculté de Médecine de Marseille.

Du point de vue déontologique

Le dossier appartient au médecin thermaliste et conserve un strict anonymat par double codage et clé d’accès personnelle, en vertu de la Loi Informatique et Libertés du 2 janvier 1978.

Sauvegarde absolue du Secret médical :

1) Strict anonymat du dossier ;
2) système de double codage.

Respect des règles déontologiques :

1) dossier : propriété exclusive du médecin thermaliste responsable ;
2) données ordinateur accessibles que sur sa demande, clé d’accès personnelle.

Respect de la Loi Informatique et Libertés : information du malade.

* Station Thermale de GREOUX-LES-BAINS, F 04600.
** Service Universitaire de Thérapeutique et d’Hydro-Climatologie Médicales, Hôpital de l’Hôtel Dieu, F 13224 MARSEILLE CEDEX.
TABLEAU I. — Bilan clinique initial.

<table>
<thead>
<tr>
<th>Satellite 7 Gonarthrose</th>
<th>Code médecin</th>
</tr>
</thead>
<tbody>
<tr>
<td>Code dossier</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>« Genou »</th>
</tr>
</thead>
<tbody>
<tr>
<td>Année 19</td>
</tr>
<tr>
<td>Mois</td>
</tr>
</tbody>
</table>

1. A — Signes généraux

- **État général**
 - 1 = Bon
 - 2 = Moyen
 - 3 = Mauvais

- **État psychique**
 - 1 = Bon
 - 2 = Moyen
 - 3 = Mauvais

- **Amaigrissement**
 - Nombre de kg
 - en combien de mois

- **Prise de poids récente**
 - Nombre de kg
 - en combien de mois

1. B — Signes fonctionnels

- **1 — Topographie douleur : Gonalgie**
 - Bilatéral
 - Unilatéral droite
 - Unilatéral gauche

- **2 — Ancienneté douleur**
 - en mois si < 2 ans
 - en années si > 2 ans

- **3 — Intensité douleur**
 - (0 à 5)

- **4 — Si élément déclenchant, apparition provoquée par**
 - Station debout
 - Marche
 - Montée escaliers
 - Descente escaliers
 - Passage assis-debout
 - Autres:

- **5 — Douleur calmée par**
 - Repos
 - Médications
 - Physiothérapie
 - Dérouillage (durée en minutes)
 - Autres

- **6 — Horaire douleur**
 - Diurne
 - Nocturne
 - Vespéral
 - Réveil du malade

- **7 — Sensible aux conditions atmosphériques**
 - lesquelles:

- **8 — Gène fonctionnelle**
 - Périmètre de marche en mètres
 - ou minutes

- **Accroupissement**
 - Bolletie ? marche
 - 1 = Aise
 - 2 = Incomplet mais symétrique
 - 3 = Très déséquilibré
 - 4 = Impossible

- **9 — Signes associés**
 - Sensations de
 - Dérobement
 - Blocage
 - Instabilité
 - Présence de
 - Craquements

Presses thermale et climatique, 1988, 125, no 5.
TABLEAU 1 (suite et fin)

I. **C — Examen clinique**

<table>
<thead>
<tr>
<th>1 — Troubles statiques</th>
</tr>
</thead>
<tbody>
<tr>
<td>Varum</td>
</tr>
<tr>
<td>Valgum</td>
</tr>
<tr>
<td>Flexum</td>
</tr>
<tr>
<td>Recurvatum</td>
</tr>
<tr>
<td>Pieds plats</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>2 — Inégalité de longueur : Membre inf.</th>
<th>D</th>
<th>G plus court de</th>
<th>mm</th>
</tr>
</thead>
</table>

<table>
<thead>
<tr>
<th>3 — Points douloureux</th>
<th>1 Absents</th>
<th>2 Légers</th>
<th>3 Vifs</th>
</tr>
</thead>
<tbody>
<tr>
<td>Interligne interne</td>
<td>D</td>
<td>G</td>
<td>D</td>
</tr>
<tr>
<td>Interligne externe</td>
<td>D</td>
<td>G</td>
<td>D</td>
</tr>
<tr>
<td>Latéro rotulien</td>
<td>D</td>
<td>G</td>
<td>D</td>
</tr>
<tr>
<td>Creux poplité</td>
<td>D</td>
<td>G</td>
<td>D</td>
</tr>
<tr>
<td>Patte d'âne</td>
<td>D</td>
<td>G</td>
<td>D</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>4 — Signe du rabot</th>
</tr>
</thead>
<tbody>
<tr>
<td>D</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>5 — Parties molles :</th>
</tr>
</thead>
<tbody>
<tr>
<td>Fluctuation hydrarthrodiale</td>
</tr>
<tr>
<td>Choc rotulien</td>
</tr>
<tr>
<td>Tuméfaction articulaire globale</td>
</tr>
<tr>
<td>Tour de genou en cm</td>
</tr>
<tr>
<td>Chaleur cutanée locale augmentée</td>
</tr>
<tr>
<td>Infiltrat cellulitique</td>
</tr>
<tr>
<td>Périmètre quadriceps en cm</td>
</tr>
<tr>
<td>Périmètre du mollet en cm</td>
</tr>
<tr>
<td>Creux poplité : kyste (voussure anorm.)</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>6 — Dynamique articulaire :</th>
</tr>
</thead>
<tbody>
<tr>
<td>Cotation d'amplitude en degrés</td>
</tr>
<tr>
<td>Douleur à la mobilisation</td>
</tr>
<tr>
<td>Extension</td>
</tr>
<tr>
<td>Flexion</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>7 — Mouvements anormaux</th>
</tr>
</thead>
<tbody>
<tr>
<td>Latéralité interne</td>
</tr>
<tr>
<td>Latéralité externe</td>
</tr>
<tr>
<td>Tiroir antérieur</td>
</tr>
<tr>
<td>Tiroir postérieur</td>
</tr>
<tr>
<td>Piston</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>8 — Autres localisations arthrosiques</th>
</tr>
</thead>
<tbody>
<tr>
<td>lesquelles :</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>9 — Autres anomalies à l'examen</th>
</tr>
</thead>
</table>

| 10 — Insuffisance veineuse périphérique ? |

<table>
<thead>
<tr>
<th>11 — Taille en cm</th>
</tr>
</thead>
<tbody>
<tr>
<td>12 — Poids en kg</td>
</tr>
<tr>
<td>--</td>
</tr>
<tr>
<td>13 — Obésité Gynoïde</td>
</tr>
<tr>
<td>--</td>
</tr>
<tr>
<td>14 — Tension artérielle en mm Hg</td>
</tr>
<tr>
<td>Syst.</td>
</tr>
</tbody>
</table>

Presse thermale et climatique, 1988, 125, n° 5.
TABLEAU II. — Bilan radiologique et conclusion.

1 — Topographie de l'atteinte arthros.
 Compartiment interne O D G O D G O D G O D G
 Compartiment externe O D G O D G O D G O D G
 Interligne fémoro-patellaire O D G O D G O D G O D G
 Épines tibiales O D G O D G O D G O D G

2 — Déviation axiale — Varum O D G — Valgum O D G

3 — Corps étrangers O D G
 Matériel d'ostéosynthèse O D G

4 — Chondrocalcinose O D G

5 — Présence de séquelles traumatiques O D G (préciser) ..
 Subluxation rot. ext. de Dysplasie rotulienne O D G

6 — Autres signes radio en clair : ..

7 — Résumé éventuel des interprétations radiologiques :

CONCLUSION

1 — Gonarthrose primitive ou essentielle □
 avec éventuellement facteurs favorisants :
 □ Surcharge pondérale □ Profession exposée □ Pathologie veineuse

2 — Gonarthrose secondaire □
 □ Varum □ Valgum
 A un défaut de l'articulation fémoro-patellaire (Dysplasie rotulienne)
 A une altération des surfaces articulaires
 Séquelles de traumatisme :
 □ Fracture □ Condyle □ D G
 □ Plateaux □ D G
 □ Diaphyse fémur □ D G
 □ Tibia □ D G
 □ Pérone □ D G
 □ Rotule □ D G
 — Luxation
 — Entorse □ LFE □ D G
 □ LLI □ D G
 □ Croisés □ D G
 — Méninges opérés

□ Séquelles d'intervention
□ Séquelles d'arthrite □ D □ G

3 — Lipogonarthrose □

TABLEAU III. — Bilan à mi-cure.

1 — Intensité de la douleur (de 0 à 5) □ Genou D
 □ Genou G

2 — Gêne fonctionnelle : l'accroupissement
 □ Allé 1
 □ Incomplet mais symétrique 2
 □ Très déséquilibré 3
 □ Impossible 4
 Gêne fonctionnelle de façon globale
 □ Aggravée 1
 □ Stable 2
 □ Diminuée 3
 □ Disparue 4

3 — Consommation médicamenteuse
 (code)
 □ Augmentée 1
 □ Stable 2
 □ Diminuée 3
 □ Arrêtée 4

4 — Incident de cure éventuel
□ Crise thermale — Au □ Autre Incident
 (code) — Jour
 □ Recrudescence des poussées dououreuses 1
 □ Poussee tensionnelle 2
 □ Fatigue générale 3
 □ Troubles gastro-intestinaux 4
 □ Infections ORL 5
 □ Fibre isolée 6
 □ Affection cutanée 7
 □ Malaise cardiaque 8
 □ Exacerbation ou révélation d'une maladie
 jusqu'alors inconnue 9
 □ Autre 10

Modification thérapeutique
 □ Maintien des techniques utilisées mais réduction de leur
 intensité 1
 □ Modification des types de techniques employés 2
 □ Suspension de la cure 3
 □ Arrêt définitif de la cure 4
 □ Prescription médic., à visée gastro-hépato-biliaire 5
 □ Prescription à visée antalgique ou anti-inflammatoire 6
 □ Prescription à visée ORL 7
 □ Autre prescription médicamenteuse 8

4 — Poids □□□□□□ kg
 Tension artérielle
 Diast. □□□□□□ mmHg
 Syst. □□□□□□ mmHg

Presso thermale et climatique, 1988, 125, n° 5.
TABLEAU IV. — Bilan en fin de cure.

<table>
<thead>
<tr>
<th>A — Signes généraux</th>
</tr>
</thead>
<tbody>
<tr>
<td>Dossier général</td>
</tr>
<tr>
<td>Insomnie</td>
</tr>
<tr>
<td>État général</td>
</tr>
<tr>
<td>État psychique</td>
</tr>
<tr>
<td>coder</td>
</tr>
<tr>
<td>2 = Bon</td>
</tr>
<tr>
<td>3 = Mauvais</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>B — Signes fonctionnels</th>
</tr>
</thead>
<tbody>
<tr>
<td>Intensité douleur de 0 à 5</td>
</tr>
<tr>
<td>Géne fonctionnelle globale</td>
</tr>
<tr>
<td>1 = Aggravé</td>
</tr>
<tr>
<td>2 = Stable</td>
</tr>
<tr>
<td>3 = Diminuée</td>
</tr>
<tr>
<td>4 = Disparue</td>
</tr>
<tr>
<td>Accroupissement</td>
</tr>
<tr>
<td>1 = Alévé</td>
</tr>
<tr>
<td>2 = Incomplet mais symétrique</td>
</tr>
<tr>
<td>3 = Très déséquilibré</td>
</tr>
<tr>
<td>4 = Imposible</td>
</tr>
<tr>
<td>Périmètre de marche en mètres</td>
</tr>
<tr>
<td>ou minutes</td>
</tr>
<tr>
<td>sans cannes</td>
</tr>
<tr>
<td>1 avec une canne</td>
</tr>
<tr>
<td>2 avec deux cannes</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>C — Examen clinique</th>
</tr>
</thead>
<tbody>
<tr>
<td>Points douloureux</td>
</tr>
<tr>
<td>1 = Augmentés en intensité</td>
</tr>
<tr>
<td>2 = Inchangés</td>
</tr>
<tr>
<td>3 = Diminués en intensité</td>
</tr>
<tr>
<td>4 = Disparus</td>
</tr>
<tr>
<td>Choc rotulien</td>
</tr>
<tr>
<td>1 = D</td>
</tr>
<tr>
<td>2 = G</td>
</tr>
<tr>
<td>Tour de genou</td>
</tr>
<tr>
<td>1 = G</td>
</tr>
<tr>
<td>2 = G</td>
</tr>
<tr>
<td>Chaleur cutanée toujours augmentée ?</td>
</tr>
<tr>
<td>(cocher s'il y a)</td>
</tr>
<tr>
<td>Périmètre quadriiceps</td>
</tr>
<tr>
<td>1 = D</td>
</tr>
<tr>
<td>2 = G</td>
</tr>
<tr>
<td>Périmètre molaire</td>
</tr>
<tr>
<td>1 = D</td>
</tr>
<tr>
<td>2 = G</td>
</tr>
<tr>
<td>Dynamique articul.</td>
</tr>
<tr>
<td>Amplitude en degrés</td>
</tr>
<tr>
<td>Dossier à la mobil.</td>
</tr>
<tr>
<td>Flexion</td>
</tr>
<tr>
<td>1 = D</td>
</tr>
<tr>
<td>2 = G</td>
</tr>
<tr>
<td>Extension</td>
</tr>
<tr>
<td>1 = D</td>
</tr>
<tr>
<td>2 = G</td>
</tr>
<tr>
<td>Autres signes remarquables</td>
</tr>
<tr>
<td>Poids</td>
</tr>
<tr>
<td>1 = Kg</td>
</tr>
<tr>
<td>T.A. Syst.</td>
</tr>
<tr>
<td>1 = mm Hg</td>
</tr>
<tr>
<td>Dist.</td>
</tr>
<tr>
<td>1 = mm Hg</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>D — Appréciation sur l'efficacité immédiate de la cure</th>
</tr>
</thead>
<tbody>
<tr>
<td>Sur l'état général</td>
</tr>
<tr>
<td>et/ou psychique</td>
</tr>
<tr>
<td>Sur le syndrome douloureux</td>
</tr>
<tr>
<td>Sur le gène fonctionnelle</td>
</tr>
<tr>
<td>Sur le jeu articulaire</td>
</tr>
<tr>
<td>1 = Très bon résultat</td>
</tr>
<tr>
<td>2 = Bon</td>
</tr>
<tr>
<td>3 = Moyen</td>
</tr>
<tr>
<td>4 = Mauvais</td>
</tr>
<tr>
<td>5 = Nul</td>
</tr>
</tbody>
</table>

| E — Traitement conseillé à domicile : |
| code 12 |

PRÉSENTATION DU DOSSIER INFORMATISE GONARTHROSE

Les données de base (profil de curiste, motivations), les satellites soins et maladie (évolueilité, traitements reçus) vous seront présentés dans un autre chapitre. Nous n'y reviendrons pas.

Le satellite gonarthrose comporte 5 parties (tableaux I à IV):

— une fiche de bilan clinique initial, général, fonctionnel, statique, palpatoire, dynamique ;
— une fiche de bilan radiologique ;
— une fiche de bilan à mi-cure appréciant la tolérance du traitement ;
— une fiche de bilan clinique de fin de cure ;
— une fiche de bilan post-cure destinée au médecin traitant.

Le dossier est répétitif d'une année sur l'autre dans la perspective d'une étude s'étendant sur plusieurs années.

RÉSULTATS IMMÉDIATS

Le Profil sociologique : âge, sexe, profession

Il s'agit le plus souvent d'une femme (74 %) d'une soixantaine d'années. Du point de vue de l'activité professionnelle, il y a presque autant de retraités (36 %) que d'actifs (38 %), avec un équilibre entre les professions sédentaires et non sédentaires.

Nombre de cures antérieures

75 p. cent des malades ont fait au moins une cure, la station la plus citée étant Gréoux-les-Bains.

Critères de choix de la station

Les patients se sont orientés vers la crénotherapie sur les conseils de leur médecin dans 67 p. cent des cas. Ils choisissent Gréoux particulièrement pour son climat (37 %). Ils renouvelent leur cure le plus souvent sur l'avis de leur médecin traitant (52 %), mais aussi en raison des bons résultats obtenus l'année précédente (65 %).

Histoire de la maladie

Le début est le plus souvent progressif (75 %) que brutal et l'évolution est le plus souvent continue (60 %) que par poussées successives (40 %). La gonarthrose est primitive dans 72 p. cent des cas mais on retrouve souvent des facteurs associés :

— pathologie veineuse : 25 p. cent,
— surcharge pondérale : 47 p. cent,
— arthroses : 80 p. cent.

Les traitements reçus antérieurement sont habituellement des salicylés (58 %), des anti-inflammatoires (60 %), des antalgiques (47 %), de la masso-kinésithérapie (45 %). La douleur a un mode de début progressif (75 %), ou brutal (25 %). Son évolution se fait de manière continue (60 %) ou par poussées (40 %).

Soins thermaux appliqués

L'ordonnance thermale type pour la gonarthrose comprend le forfait de base (bains, vaporarium) (100 %), les mobilisations actives en piscine (91 %), les pédiouches avec pédiouillages actifs (jusqu'au genou) dans la baie (76 %), les massages sous l'eau (9 %), les douches-massages sous immersion (54 %), ou les trombes (32 %).

Bilan clinique et radiologique initial

D'apparition assez récente (avec un maximum de 2 à 4 ans d'ancienneté dans 28 p. cent des cas) (tableau VI), les douleurs gardent le caractère mécanique des lésions dégénératives : survenant à l'effort (92 %), s'estompant au repos (68 %). L'interrogatoire laisse présager la fréquence des syndromes rotulien, avec une douleur déclenchée par la descente (62 %) ou la montée (49 %) des escaliers, avec présence de craquements (39 %), sensation de blocage (23 %), de dérobement (39 %) (tableau VI).

Presse thermale et climatique, 1988, 126, no 5.
TABLEAU V. — Ancienneté de la douleur.

<table>
<thead>
<tr>
<th>Années</th>
<th>%</th>
</tr>
</thead>
<tbody>
<tr>
<td>Moins de 2 ans</td>
<td>17</td>
</tr>
<tr>
<td>5 à 7 ans</td>
<td>28</td>
</tr>
<tr>
<td>8 à 10 ans</td>
<td>18</td>
</tr>
<tr>
<td>Plus de 10 ans</td>
<td>20</td>
</tr>
</tbody>
</table>

TABLEAU VI. — Cause d’apparition de la douleur.

<table>
<thead>
<tr>
<th>Apparition provoquée par</th>
<th>Nombre</th>
<th>%</th>
</tr>
</thead>
<tbody>
<tr>
<td>Station debout</td>
<td>115</td>
<td>25</td>
</tr>
<tr>
<td>Marche</td>
<td>221</td>
<td>47</td>
</tr>
<tr>
<td>Montée escaliers</td>
<td>233</td>
<td>49</td>
</tr>
<tr>
<td>Descente escaliers</td>
<td>264</td>
<td>62</td>
</tr>
<tr>
<td>Passage assis-debout</td>
<td>158</td>
<td>33</td>
</tr>
</tbody>
</table>

TABLEAU VII. — Sensibilité aux conditions atmosphériques.

<table>
<thead>
<tr>
<th></th>
<th>Nombre</th>
<th>%</th>
</tr>
</thead>
<tbody>
<tr>
<td>Horaire</td>
<td>463</td>
<td>100</td>
</tr>
<tr>
<td>Diurne</td>
<td>374</td>
<td>80</td>
</tr>
<tr>
<td>Nocturne</td>
<td>119</td>
<td>25</td>
</tr>
<tr>
<td>Réveille le malade</td>
<td>93</td>
<td>20</td>
</tr>
</tbody>
</table>

TABLEAU VIII. — Durée du dérouillage.

<table>
<thead>
<tr>
<th></th>
<th>Nombre (sur 131)</th>
</tr>
</thead>
<tbody>
<tr>
<td>0 à 17 min</td>
<td>79</td>
</tr>
<tr>
<td>18 à 59 min</td>
<td>32</td>
</tr>
<tr>
<td>Plus de 60 min</td>
<td>19</td>
</tr>
</tbody>
</table>

TABLEAU IX. — Interprétation radio.

<table>
<thead>
<tr>
<th>Topographie de l’atteinte</th>
<th>Osteophytes (108)</th>
<th>Pincement (118)</th>
<th>Condensat (88)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Dr au g</td>
<td>dr 89 g 83</td>
<td>dr 91 g 86</td>
<td>dr 52 g 57</td>
</tr>
<tr>
<td>Comp. int.</td>
<td>46 43</td>
<td>67 69</td>
<td>31 34</td>
</tr>
<tr>
<td>Comp. ext.</td>
<td>16 20</td>
<td>20 20</td>
<td>15 18</td>
</tr>
<tr>
<td>Int. fem. patel.</td>
<td>49 49</td>
<td>54 57</td>
<td>33 39</td>
</tr>
<tr>
<td>Epines tibial.</td>
<td>40 39</td>
<td>10 15</td>
<td>8 12</td>
</tr>
</tbody>
</table>

La gonalgie est sensible aux conditions atmosphériques (62 %). Elle est d’horaire diurne (80 %) (tableau VII) avec un dérouillage inférieur à 17 minutes en moyenne (79 %) (tableau VIII). L’examen affine le diagnostic avec une palpation rotulienne douloureuse dans 71 % des cas pour le genou droit (75 % à gauche).

Les radiographies retrouvent une arthrose fémoro-patellaire chez près d’un malade sur deux, une arthrose fémoro-tibiale interne chez 67 % des sujets, fémoro-tibiale externe chez 20 % d’entre eux (tableau IX).

TABLEAU X. — Répartition des intensités des douleurs (genou droit).

<table>
<thead>
<tr>
<th>Intensité</th>
<th>0</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
</tr>
</thead>
<tbody>
<tr>
<td>Début de cure</td>
<td>3</td>
<td>34</td>
<td>156</td>
<td>173</td>
<td>90</td>
<td>18</td>
</tr>
<tr>
<td>Fin de cure</td>
<td>163</td>
<td>141</td>
<td>106</td>
<td>32</td>
<td>10</td>
<td>0</td>
</tr>
</tbody>
</table>

TABLEAU XI. — Répartition des intensités des douleurs (genou gauche).

<table>
<thead>
<tr>
<th>Intensité</th>
<th>0</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
</tr>
</thead>
<tbody>
<tr>
<td>Début de cure</td>
<td>3</td>
<td>34</td>
<td>156</td>
<td>173</td>
<td>90</td>
<td>18</td>
</tr>
<tr>
<td>Fin de cure</td>
<td>140</td>
<td>151</td>
<td>102</td>
<td>46</td>
<td>10</td>
<td>0</td>
</tr>
</tbody>
</table>

TABLEAU XII. — Evolution de la douleur : histogramme calculées : int. début - int. fin de cure.

<table>
<thead>
<tr>
<th>Gain en intensité</th>
<th>Aggrav.</th>
<th>Résultat</th>
<th>Nul</th>
<th>Moyen</th>
<th>Bon</th>
<th>Très bon</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>— 1</td>
<td></td>
<td>+ 1</td>
<td></td>
<td>+ 2</td>
<td>> 3</td>
</tr>
<tr>
<td>Genou droit</td>
<td>6 49</td>
<td>152</td>
<td>155</td>
<td>99</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Genou gauche</td>
<td>3 56</td>
<td>163</td>
<td>152</td>
<td>74</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Total</td>
<td>9 105</td>
<td>315</td>
<td>307</td>
<td>163</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

La gonalgie est sensible aux conditions atmosphériques (62 %). Elle est d’horaire diurne (80 %) (tableau VII) avec un dérouillage inférieur à 17 minutes en moyenne (79 %) (tableau VIII). L’examen affine le diagnostic avec une palpation rotulienne douloureuse dans 71 % des cas pour le genou droit (75 % à gauche).

Les radiographies retrouvent une arthrose fémoro-patellaire chez près d’un malade sur deux, une arthrose fémoro-tibiale interne chez 67 % des sujets, fémoro-tibiale externe chez 20 % d’entre eux (tableau IX).

Evolution des signes fonctionnels au cours de la cure

La douleur (tableaux X, XI, XII)

L’intensité de la douleur est cédée de 0 à 5 selon les critères de Merle d’Aubigné. En fin de cure l’intensité de la douleur diminue sensiblement. En effet 67 à 70 p. cent (selon le genou coté) des curistes souffrent moins ou plus du tout contre 9 p. cent au départ (Test de Wilcoxon significatif p<0,01).

Pour affiner le résultat, nous avons réalisé un histogramme sur formule calculée en tenant compte du gain numérique en intensité entre le début et la fin de la cure selon la classification suivante :

— Aggravation : —1 Pt.
— Résultat nul : différence = 0.
— Résultat moyen : +1 Pt.
— Résultat bon : +2 Pts.
— Très bon résultat : +3 à +5 Pts.

Nous obtenons 53 p. cent de Bon et Très bon résultats immédiats, avec ici aussi un taux très significatif p<0,01.

La gène fonctionnelle (tableaux XIII, XIV, XV)

— Subjectivement, nous obtenons 82 p. cent de bons et très bons résultats, c'est-à-dire une gène diminuée ou disparue (selon le malade).
— Objectivement, pour 189 patients qui présentaient un accroupissement très déséquilibré ou impossible en début de cure, il n'en reste que 109 en fin de cure (p<0,01).
— Le périmètre de marche moyen passe de 341 à 957 mètres avec un SRIA significatif (p<0,01) et le temps de...
TABLEAU XIII. — La gêne fonctionnelle : appréciation subjective.

<table>
<thead>
<tr>
<th>Appréciation</th>
<th>Nombre</th>
<th>%</th>
</tr>
</thead>
<tbody>
<tr>
<td>Aggravée</td>
<td>7</td>
<td></td>
</tr>
<tr>
<td>Stable</td>
<td>75</td>
<td></td>
</tr>
<tr>
<td>Diminuée</td>
<td>346</td>
<td>82%</td>
</tr>
<tr>
<td>Disparue</td>
<td>37</td>
<td></td>
</tr>
<tr>
<td>Total</td>
<td>482</td>
<td></td>
</tr>
</tbody>
</table>

TABLEAU XIV. — Accroupissement : appréciation objective (eff. 470).

<table>
<thead>
<tr>
<th>Aisé</th>
<th>Incomplèt</th>
<th>Déséquilibré</th>
<th>Impossible</th>
<th>Wilcoxon</th>
</tr>
</thead>
</table>
| Décub. sur 22 avec canne en début de cure, il en reste 17 en fin de cure (→ 9).
| Décub. sur 22 avec canne en début de cure, il en reste 17 en fin de cure (→ 9).

TABLEAU XV. — Périomètre et temps de marche.

<table>
<thead>
<tr>
<th>Périomètre</th>
<th>Décub. sur 22 avec canne en début de cure, il en reste 17 en fin de cure (→ 9).</th>
</tr>
</thead>
<tbody>
<tr>
<td>Moyenne</td>
<td>340,948</td>
</tr>
<tr>
<td>Ecart-type</td>
<td>261,093</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Temp. de marche</th>
<th>Décub. sur 22 avec canne en début de cure, il en reste 17 en fin de cure (→ 9).</th>
</tr>
</thead>
<tbody>
<tr>
<td>Moyenne</td>
<td>74,680 mn</td>
</tr>
<tr>
<td>Ecart-type</td>
<td>78,155</td>
</tr>
</tbody>
</table>

Evolution des paramètres cliniques entre la 1re et la 3e visite (tableaux XVI, XVII, XVIII)

— Les points douloureux sont diminués en intensité ou disparus chez 77,9 p. cent de nos malades.

— L’action antiphlogistique de la boue est manifeste pour 41 à 55 p. cent des curistes avec une réduction moyenne du tour de genou de 0,4 cm pour le genou gauche (p < 0,01) et de 0,3 cm pour le genou droit, certes discrète mais significative, c’est-à-dire non due au hasard d’après le test des séries appariées.

— L’amplitude articulaire a été mesurée au genou en début et en fin de cure. Nous avons effectué un tri statistique préalable, ne retenant que les flexions pathologiques c’est-à-dire inférieures à 130 degrés. Le gain moyen est de 10 degrés à droite (p < 0,01) et de 11 degrés à gauche (p < 0,01), il est hautement significatif dans 87 p. cent des cas.

TABLEAU XVI. — Evolution des paramètres cliniques : points douloureux (eff. 493).

<table>
<thead>
<tr>
<th>Évolution</th>
<th>Nombre</th>
<th>%</th>
</tr>
</thead>
<tbody>
<tr>
<td>Augmentés en intensité</td>
<td>5</td>
<td></td>
</tr>
<tr>
<td>Inchangés</td>
<td>95</td>
<td></td>
</tr>
<tr>
<td>Diminués en intensité</td>
<td>232</td>
<td>78%</td>
</tr>
<tr>
<td>Disparus</td>
<td>121</td>
<td></td>
</tr>
</tbody>
</table>

TABLEAU XVII. — Evolution des paramètres cliniques : tour de genou.

<table>
<thead>
<tr>
<th>Genou gauche</th>
<th>Décub. sur 22 avec canne en début de cure, il en reste 17 en fin de cure (→ 9).</th>
</tr>
</thead>
<tbody>
<tr>
<td>Moyenne</td>
<td>37,645 cm</td>
</tr>
<tr>
<td>Ecart-type</td>
<td>3,434</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Genou droit</th>
<th>Décub. sur 22 avec canne en début de cure, il en reste 17 en fin de cure (→ 9).</th>
</tr>
</thead>
<tbody>
<tr>
<td>Moyenne</td>
<td>37,558 cm</td>
</tr>
<tr>
<td>Ecart-type</td>
<td>3,343</td>
</tr>
</tbody>
</table>

TABLEAU XVIII. — Evolution des paramètres cliniques : amplitude articulaire (en degrés), trf < 130°.

<table>
<thead>
<tr>
<th>Flexion genou droit</th>
<th>Décub. sur 22 avec canne en début de cure, il en reste 17 en fin de cure (→ 9).</th>
</tr>
</thead>
<tbody>
<tr>
<td>Moyenne</td>
<td>118,00</td>
</tr>
<tr>
<td>Ecart-type</td>
<td>9,964</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Flexion genou gauche</th>
<th>Décub. sur 22 avec canne en début de cure, il en reste 17 en fin de cure (→ 9).</th>
</tr>
</thead>
<tbody>
<tr>
<td>Moyenne</td>
<td>114,825</td>
</tr>
<tr>
<td>Ecart-type</td>
<td>16,850</td>
</tr>
</tbody>
</table>

— 72 p. cent B et TB en ce qui concerne la séduction des douleurs (ce qui est un peu plus optimiste que l’étude algométrique)...

— 77 p. cent B et TB en ce qui concerne la diminution de la gêne fonctionnelle.

— 66 p. cent B et TB en ce qui concerne l’amélioration du jeu et de la souplesse articulaire.

RÉSULTATS A LONG TERME

Résultats issus de l’examen clinique

Cette étude est très récente, elle concerne 10 p. cent des curistes et porte sur deux cures successives. L’échantillon varie de 15 à 40 selon le paramètre étudié, mais le taux de signification est toujours très élevé.

Deux paramètres objectifs ont été retenus : Le périmètre de marche et l’amplitude du genou en flexion.

En regardant les résultats, il est intéressant de constater que :

a) En ce qui concerne l’évolution du périmètre de marche moyen d’une année à l’autre,
 — Il progresse de 296 mètres en moyenne entre le début et la fin de la 1re cure ;
 — Il progresse de 269 mètres en moyenne entre le début et la fin de la 2e cure ;

Prose thermale et climatique, 1968, 125, no 5.
TABLEAU XIX. — Evolution du périmètre de marche moyen d’une année sur l’autre (eff. 40 curistes).

<table>
<thead>
<tr>
<th></th>
<th>$p < 0.01$</th>
<th>$p < 0.01$</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>$+ 296$</td>
<td>$+ 296$</td>
</tr>
<tr>
<td>Première cure</td>
<td>$- 64$</td>
<td>$- 64$</td>
</tr>
<tr>
<td>Deuxième cure</td>
<td>$+ 475$</td>
<td>$+ 475$</td>
</tr>
<tr>
<td>d_c</td>
<td>$p < 0.1$</td>
<td>$p < 0.1$</td>
</tr>
<tr>
<td>f_c</td>
<td>$p < 0.01$</td>
<td>$p < 0.01$</td>
</tr>
</tbody>
</table>

Répartition des écarts réduits (aria)

- Début 1e cure — fin 1e cure $ER = 3,731$ $(p < 0.01)$
- Début 1e cure — début 2e cure $ER = 3,207$ $(p < 0.01)$
- Début 1e cure — fin 2e cure $ER = 4,027$ $(p < 0.01)$
- Fin 1e cure — début 2e cure $ER = 1,309$ $(p < 0.1)$
- Fin 1e cure — fin 2e cure $ER = 2,331$ $(p < 0.05)$
- Début 2e cure — fin 2e cure $ER = 3,741$ $(p < 0.01)$

— il progresse de 218 mètres en moyenne entre le début de la 1e cure et le début de la 2e cure ;
— il progresse de 475 mètres en moyenne entre le début de la 1e cure et la fin de la 2e cure ;
— il diminue de 64 mètres en moyenne seulement entre la fin de la 1e cure et le début de la 2e cure, ce qui montre une relative conservation du bénéfice engendré par la 1e cure (tableau XIX).

TABLEAU XX. — Evolution de l’amplitude articulaire du genou (en degrés) sur deux cures successives.

<table>
<thead>
<tr>
<th></th>
<th>$p < 0.01$</th>
<th>$p < 0.01$</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>$+ 1^o$</td>
<td>$+ 7^o$</td>
</tr>
<tr>
<td>Première cure</td>
<td>$- 2,5^o$</td>
<td>$- 2,5^o$</td>
</tr>
<tr>
<td>Deuxième cure</td>
<td>$+ 16^o$</td>
<td>$+ 16^o$</td>
</tr>
<tr>
<td>d_c</td>
<td>$p < 0.1$</td>
<td>$p < 0.01$</td>
</tr>
<tr>
<td>f_c</td>
<td>$p < 0.01$</td>
<td>$p < 0.01$</td>
</tr>
</tbody>
</table>

Répartition des écarts réduits (aria)

- Début 1e cure — fin 1e cure $ER = 6,588$ $(p < 0.01)$
- Début 1e cure — début 2e cure $ER = 4,843$ $(p < 0.01)$
- Début 1e cure — fin 2e cure $ER = 7,758$ $(p < 0.01)$
- Fin 1e cure — début 2e cure $ER = 1,440$ $(p < 0.01)$
- Début 2e cure — fin 2e cure $ER = 7,946$ $(p < 0.01)$

— il progresse de 218 mètres en moyenne entre le début de la 1e cure et le début de la 2e cure ;
— il progresse de 475 mètres en moyenne entre le début de la 1e cure et la fin de la 2e cure ;
— il diminue de 64 mètres en moyenne seulement entre la fin de la 1e cure et le début de la 2e cure, ce qui montre une relative conservation du bénéfice engendré par la 1e cure (tableau XIX).

b) En ce qui concerne la flexion du genou droit (les résultats sont peu différents pour le genou gauche).
— le gain moyen est de 11o entre le début et la fin de la 1e cure ;
— le gain moyen est de 7o entre le début et la fin de la 2e cure ;
— le gain moyen est de 8o entre le début de la 1e cure et le début de la 2e cure ;
— le gain moyen est de 16o entre le début de la 1e cure et la fin de la 2e cure ;
— la flexion moyenne diminue de 2,5o seulement entre la fin de la 1e cure et le début de la 2e cure (là aussi perte minime du bénéfice) (tableau XX).

En conclusion, il est à noter que le bénéfice s’atténue un peu lors de la 2e cure, mais surtout que le malade en conserve la majeure partie entre les deux cures, ce qui confirme l’intérêt de la répétition des cures pour consolider et potentialiser le bénéfice acquis.

D’après le questionnaire fourni par le patient

— On observe une diminution ou une annulation de l’absentéisme professionnel dans 88 p. cent des cas (parmi les curistes qui travaillent), celui-ci ayant diminué en moyenne de 16 p. cent et ce d’une cure à l’autre.
— On note également entre les deux cures une consommation médicamenteuse spécifique diminuée dans 47 p. cent des cas, voire annulée chez 15 p. cent des patients.

CONCLUSION, PERSPECTIVES D’AVENIR

La crénothérapie, médecine bien vivante, sort de sa phase d’empirisme, mais doit pour affirmer sa crédibilité se renouveler sans cesse, dans un effort permanent de réflexion, d’observation et de recherche, basé sur les acquisitions les plus récentes de la science bio-médicale et de la technique.

L’informatisation d’observations cliniques nombreuses et répétées représente une méthode de recherche à la mesure du formidable potentiel épidémiologique représenté par les dizaines de milliers de rhumatisants qui fréquentent chaque année nos stations.

Nous espérons dans l’avenir potentialiser ces résultats par une informatisation des données biologiques concernant par exemple les tests et les protéines de l’inflammation.

Nous tiendrons compte des critiques et des suggestions formulées par nos correspondants, par nos confrères thermalistes ici présents et par les stagiaires de l’attestation d’Hydrologie ayant utilisé le dossier pour leur mémoire, afin d’en affiner la présentation et de donner encore plus de rigueur et de simplicité au recueil des divers paramètres.

Dans la perspective de l’informatisation prochaine de nos cabinets médicaux, ce dossier pourrait servir de canevas à un compte-rendu de cure sur le modèle des compte-rendus d’hospitalisation, avec édition automatique de lettres. Chaque médecin dirigerait ainsi ses propres recherches sur son propre ordinateur.

Pour en revenir à notre malade gonarthrosique, notre étude confirme l’efficacité à court et à moyen terme de la Crénothérapie, l’inscrivant à part entière parmi l’arsenal thérapeutique dont nous disposons, avec quatre pôles d’attraction :

1. L’action bénéfique de l’eau et de sa thermalité sur le ralentissement de la dégradation du cartilage et sur la sédation des douleurs dues à la synovite.
2. L’amélioration de la cinétique articulaire et l’assouplissement des éléments musculo-ligamentaires par la mobilisation en piscine, avec un phénomène annexe d’hyperhémie et de dilatation artériolaire non négligeable.
3. La prise de conscience, hors du cadre de vie habituel, des mesures hygiéno-diététiques indispensables.
4. Un complément appréciable à une éventuelle intervention chirurgicale, que ce soit dans sa phase de préparation ou de rééducation fonctionnelle.
Intérêt de la crénothérapie dans les lombalgies après chirurgie de hernie discale

B. ALLARY, M. PICARD *
(Bourbonne-les-Bains)

Parmi la diversité des tableaux rhumatologiques traités en station thermale, il nous a paru intéressant de nous limiter à un domaine très particulier : les suites des hernies discales opérées.

L'intérêt de ce sujet tient à plusieurs éléments :
— le premier est celui de la réalité de l'atteinte anatomo-
que bien décrite par le chirurgien opérateur : l'ablation de
la hernie, le curetage du disque ;
— le deuxième est celui de la position particulière de
la crénothérapie qui vient compléter un geste chirurgical que le malade espérait souverain, mais qui reste toujours suivi d'une lombalgie chronique parfois invalidante.
— le troisième est représenté par l'existence de signes
objectifs à l'examen, indice de Schöber, distance mains-
soi, dont on peut suivre l'évolution entre début et fin de
cure puis au cours des années successives d'observation.

L'étude a été réalisée sur 3 années 1983, 1984, 1985
et a permis de regrouper 52 patients qui venaient en
cure thermale pour la première fois en 1983 après une
intervention plus ou moins récente sur une hernie discale
lombaire, responsable d'une sciatic invalidante.

Le bilan a été réalisé à l'issue de la troisième cure en
1985.

Ces 52 patients se répartissent en 34 hommes et 18
femmes, d'âge moyen 53 ans 2 mois ; 30 ont une activité
professionnelle survenant le rachis lombaire et, pour 7
d'entre eux, un accident du travail est reconnu à l'origine
directe de la hernie discale ; habituellement effort de
soulèvement et sciatico invalidante.

Nous nous sommes attachés à faire préciser 2 délais qui
nous paraissaient intéressants dans le cadre de cette
étude :
— celui s'écoulant entre le début de la sciatico et
l'intervention chirurgicale : en moyenne 4 ans, le patient
étant opéré à un âge moyen de 42 ans ;
— le deuxième délai est celui situé entre l'intervention
et la première cure ; il nous a ainsi semblé possible d'indi-
vidualiser 2 populations distinctes : 34 venaient après
4 ans d'évolution d'une lombalgie chronique post-chirur-
gicale, mais les 18 autres avaient été opérés depuis moins
de 3 ans ; nous verrons en conclusion de cette étude
l'incidence de ce délai sur le bénéfice de la crénothérapie.

Sur nos 52 patients, la lombalgie de caractère mécanique
est apparue avant un délai post-chirurgical de un an.

SOINS THERMAUX

La balnéation constitue l'élément constant, le plus ancien
de la thérapeutique thermale. Le bain est donné en baignoire
ou en piscine individuelle d'accès plus facile. Certains élé-
ments ajoutés au bain simple en font varier l'action.

Le bain aérogazeux, ou les microbulles ajoutent 2 éléments,
une séparation accrue des molécules d'eau et des éléments
minéraux dissous, un effet de massage régulier sur l'ensem-
ble de la surface cutanée.

Le bain hydropulsé par balayage ; l'eau étant animée par
de pulsations rythmées dirigées sur la région corporelle à
traiter en priorité. L'intérêt de ce type de soin tient aux pos-
sibilité d'adapter la pression et la fréquence du balayage à la
pathologie traitée et à l'effet recherché.

La douche sous-marine est donnée au cours du bain par
un jet d'eau thermale plus chaud, sous forte pression. L'élé-
ment important est l'élément dynamique de massage direct,
fonction de la pression appliquée.

Le demi-bain hyperthermal ; intéressant ici, permet sur le
patient assis de recevoir un bain à 39 °C pendant 5 minutes.
Il provoque une vaso-dilatation périphérique intense qui ren-
force l'action analgésique du bain aérogazeux général.

La douche donnée assis ou debout recherche 2 effets :
soit, à pression élevée, un effet musculaire tonique ; soit, à
pression plus basse, un effet décontractant de la musculature
paravertébrale.

L'émanatorium permet d'augmenter l'absorption des élé-
ments d'eau thermale par voies respiratoires, le patient étant
placé dans une salle remplie par les gaz thermaux.

Le massage sous eau thermale permet l'action du kinési-
thérapeute visant à décontracter la musculature paraverté-
brale, aidé par l'eau thermale produite par une rampe située
au dessus du patient.

L'hydrokinésithérapie est permise dans des piscines et elle
est effectuée sous la direction d'un kinésithérapeute. A l'effet
sédatif de l'eau thermale, s'ajoute l'intérêt de l'apesanteur
qui facilite l'amplitude articulaire, redonne à la musculature
une tonicité accrue nécessaire à la dynamique vertébrale
perturbée par la hernie discale et son intervention.

Les illutations consistent en applications locales de boue
thermale. A l'absorption des éléments de l'eau présents dans
la boue vient s'ajouter l'effet thermique local plus intense
que ne peut le réaliser un bain général.

Les soins reçus en établissement sont suivis d'un repos
étendu de 2 heures permettant la réalisation d'une réaction
physiologique normale induite par l'eau thermale au niveau
des tissus.

* Docteur Bernard Allary, Docteur Michel Picard, Rhumatolo-
gues, 52400 BOURBONNE-LES-BAINS.

Pressa thermale et climatique, 1988, 125, no 5.
MÉTHODOLOGIE

La méthodologie utilisée a regroupé plusieurs systèmes d'évaluation du bénéfice de la crénothérapie, ceci afin d'éliminer des discordances trop frappantes quand on se limite aux données de l'interrogatoire. Il est en effet nécessaire de disposer de plusieurs éléments comparatifs, reproductibles d'une année à l'autre, l'addition de ces éléments permettant de mieux cerner le déficit fonctionnel pour parvenir si possible à quantifier la douleur.

L'interrogatoire subjectif fait préciser, dans un premier temps, si vous êtes beaucoup mieux, mieux, identique ou moins bien.

Mais l'imprécision des réponses nous a fait préférer rapidement 3 données plus utilisables. La première est une cotation simple de la douleur :

<table>
<thead>
<tr>
<th>0</th>
<th>Douleur insupportable</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Absence de douleur</td>
</tr>
</tbody>
</table>

La mesure de l'intensité ou de la sensation douloureuse est la distance entre le point 0 et le trait placé par le malade.

La troisième est représentée par la grille de Bourris, simple, qui permet d'évaluer ensemble l'intensité de la douleur et le retentissement fonctionnel dans l'activité quotidienne.

On porte en abscisse la plainte, quantifiée de 1 à 5 ; en ordonnée, l'activité du patient ; on obtient ainsi une surface rectangulaire mesurable, représentative de la douleur et du déficit fonctionnel qu'elle entraîne.

La plainte :

| Pas de plainte, même à l'interrogatoire ; |
| Plaigne uniquement à l'interrogatoire ; |
| Plainte spontanée, mais peu fréquente ; |
| Enlèvement partiel du langage par la plainte ; |
| Enlèvement complet du langage par la plainte. |

L'activité spontanée :

| Activité normale ; |
| Activité d'extérieur partielle, le sujet abanonne certains travaux et distractions habituelles ; |
| Activité d'intérieur seule ; |
| Activité de chambre ; |
| Lit, malade grébatoire. |

Les résultats obtenus sont enfin comparés avec les appréciations du médecin traitant qui suit le patient tout au long de l'année et avec l'examen clinique qui mesure la rigidité lombaire et évalue les contractures musculaires :

<table>
<thead>
<tr>
<th>0</th>
<th>l'indice de Schöber n'est guère utilisable, ses variations étant peu sensibles.</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Le test le plus reproductible est représenté par la distance mains-sol qui nous semble plus exploitable en éliminant bien sûr les majorations subjectives parfois flagrantes.</td>
</tr>
</tbody>
</table>

Cependant, malgré ces variations subjectives, cette distance n'a jamais varié de plus de 3 cm chez un patient non amélioré.

RÉSULTATS

Ils sont obtenus par la comparaison des données entre le début de la première cure en 1983 et la fin de la troisième en 1985.

Interrogatoire

<table>
<thead>
<tr>
<th>14</th>
<th>71,16 p. cent</th>
</tr>
</thead>
<tbody>
<tr>
<td>23</td>
<td>28,84 p. cent</td>
</tr>
</tbody>
</table>

Cotation de la douleur

<table>
<thead>
<tr>
<th>Début de cure 1983</th>
<th>Fin de cure 1985</th>
</tr>
</thead>
<tbody>
<tr>
<td>Douleur insupportable 6</td>
<td>65,38 p. cent</td>
</tr>
<tr>
<td>Douleur modérée 12</td>
<td>34,62 p. cent</td>
</tr>
<tr>
<td>Douleur sévère 27</td>
<td>9,68 p. cent</td>
</tr>
<tr>
<td>Douleur nocturne 7</td>
<td>9,68 p. cent</td>
</tr>
</tbody>
</table>

Douleur insupportable 11	63,46 p. cent
Douleur modérée 22	36,54 p. cent
Douleur sévère 16	36,54 p. cent
Douleur nocturne 3	36,54 p. cent

Echelle de Huskinson

| Moyenne initiale 1983 7,8/10 |
| Surface finale 1985 3,1/10 |
| soit 73,08 p. cent de gain |

Grille de Bourris

| Surface initiale 1983 16,92 |
| Surface finale 1985 6,09 |
| soit 64 p. cent de gain |

Cette amélioration notée par ces 3 techniques d'interrogatoire est retrouvée :

| d'une part lors de l'examen clinique, dans la mesure de la mobilité rachidienne lombaire ; |
| d'autre part dans la diminution globale de la consommation des antalgiques et antiinflammatoires au cours de l'année. |

Mais, plus que le résultat global moyen de la crénothérapie sur l'ensemble des 52 patients, nous avons remarqué des différences notables entre le groupe des 34 patients opérés depuis 4 ans ou plus et celui des 18 chez lesquels l'intervention était postérieure à 1980.
Pool therapy for paralytic patients

J.D. HENRIKSEN *
(Chattanooga)

As Medical Director of the Rehabilitation Center in Hawaii, 1957, I observed the value of pool therapy for the first time.

A stroke patient with hemiplegia was rehabilitated first as an in-patient, later as an out-patient. One day right after dedication of the new center and pool, he came walking in with his cane and short-leg brace and we talked him into trying exercising in the pool.

Soon he was standing at the edge of the pool where we wanted to help him to step down into the pool; but before we knew it, he suddenly dived and did swim to the other end. It was as if the water loosened up his spasticity in that he forgot his weakness; and having been a good swimmer before, he naturally took off in the water. Since starting in the pool, he trained often and decreased many of his symptoms.

Pool therapy is useful in many forms of orthopedic, neurologic and rheumatic diseases. It is a valuable adjunct, but doesn’t replace other forms of exercise. Water is an exercise medium in its own right.

Some of the characteristics of water are:

— Buoyancy. As a person of 100 pounds weight, loses 95 pounds while moving in the water. The upthrust of the water helps to perform exercises.

— The viscosity of the water and the hydrostatic forces gives all movements some resistance. Speed, size, and form may increase this force.

— At temperatures between 34° and 36° celcius, water feels pleasant and gives little heat loss. It is ideal for exercises at it promotes relaxation of spasticity and decreases feeling of pain. For swimming, the ideal temperature is 26° to 28 °C.

— Stabilization during underwater exercise can be obtained through railings, bars, submerged chairs, tables, and by air-filled rings and body corsets.

— Application of underwater exercise is most valuable in muscle readuction.

Patients are often afraid of the pool because they are not swimmers and perhaps never tried to be in a pool before. At first it is, therefore, important to get the patient to relax, to control their breathing, and to learn to sit, stand, float, and move in the water.

For the paralytic patient, the underwater exercise consists of:

— Passive, active assistive and resistive exercises.
— Coordination exercises by repetition and rhythmic performance.
— Increasing range of motion.
— Gait training at an early stage.
— Better balancing.
— Swimming.

Problems to overcome:

— Weakness.
— Spasticity.
— Contractures.
— Incoordination.
— Mental and emotional symptoms.

The purpose is to:

— Regain power and endurance.
— Practical activity.
— Loosen up restrictions.
— Develop ability to perform out of water, especially walking.
— Create self-confidence, hope to make rehabilitation enjoyable by team games and recreation. In other words, to boost the morale and relieve spells of depression and loss of motivation.

Disadvantages:

— Cost factor of building and maintenance.
— Slight chance of infections, especially upper respiratory.
— Fatigue after the treatment.
— Limitation of the number that can be treated.
Advantages:

- Easier to give finer graduation and freedom of exercises.
- Range of motion increases easier when patient is relaxed and circulation increased.
- Warm water has sedative effect on sensory nerve endings, resulting in reduced pain from stretching contractures and other movements.
- Fear of falling gradually reduced.
- Psychological confidence or anxiety reduced.
- Swimming a compensation for other activities.
- Walking at earlier stage than on land by careful training; improved balance; increased muscle tone; gradual reduction of water level.
- Bilateral function of hemiparetic patients stimulate the weak side.
- Therapy performed first with therapist, later in groups, and at last can be performed independently.
- May be combined with teaching of swimming.

In searching for references I looked at 457 medical articles on strokes from 1971 to 1981, but no mention of pool therapy for hemiplegic.

Ronald Harris, Manchester, England, feels that 58% are helped from pool therapy and estimate that 5% of all patients in a general hospital would benefit from pool therapy.

In 1970 I attended the International Congress on Medical Hydrology in Estoril, Portugal, and heard a paper of two Japanese authors, Yoshio Oshima and Hiro Kozima, on rehabilitation of post-apoplectic hemiplegic through balneotherapy. By early therapy 87.8% improved, by late therapy 61.9% improved, 92% of the patients were ambulatory in 37 days of rehabilitation, and 79% fulfilled ADL in 37 days of rehabilitation.

The program was performed at Neasoma Rehabilitation Center in Japan and the final result was that 27.9% of men after stroke could return to previous job and 39.6% of women after stroke returned to the same previous job.

I have had the opportunity to treat more than 100 paralytic patients with pool therapy. A follow-up of 76 patients will be reported at this time. The diagnosis was varied. The largest group were stroke patients with hemiplegia. The details are presented:

- Hemiparesis dxt. : 19
- Hemiparesis sin. : 30
- Paraplegia : 5
- Paralysis agitans : 8
- Poliomyelitis sequelae : 6
- Cerebral Palsy : 3
- Multiple Sclerosis : 3
- Muscular Dystrophy : 2
- Total : 76 patients

For further details we found that the age varied from 47 to 82 years of age, sex ratio was 36 women to 40 men, swimmers before the stroke was 24, non-swimmers was 52, number of pool treatments 10 to 25, and 10 were able to continue pool treatment in their hometown. There were 35 who wanted to return to the Center for more pool therapy. There was improvement both in upper and lower extremities — 48 felt great improvement in the lower extremities, 28 in the upper extremities — in all 76.

Risks:

The main risk could be circulatory shock, angina pectoris, heart attack, respiratory infections.

In our statistics we find very little change in blood pressure, frequency of respiration. Pulse usually raised about 30%. Very few come down with upper respiratory infection and no one encountered pneumonia, coronary thrombosis or stroke.

In conclusion I like to state that rehabilitation of paralytic patients gets a brighter outlook when pool therapy is included. It makes rehabilitation more enjoyable, as patients look forward with enthusiasm to every session. They get the impression that something extraordinary happens.

They are encouraged by their performance in the pool and show more interest in the whole and train with more eagerness to reach their goal of ambulation and independence in self-care.
Session 4

Effets physiologiques de l’immersion et de la balnéation

Sur l’élévation immédiate de la pression artérielle générale provoquée par l’immersion verticale

J. LECOMTE, D. LAGNEAUX *
(Spa)

Lors de l’immersion verticale de l’homme normal, correctement hydraté, dans un bain d’eau douce thermo-indifférente, eau jusqu’au menton, la pression artérielle générale s’élève de 15 à 20 mmHg (Arborelius et al. 1972 ; Norsk et al., 1986). Comment expliquer cette élévation de la pression artérielle générale ?

EFFETS MÉCANIQUES IMMÉDIATS DE L’IMMERSION

L’immersion introduit le corps humain dans un milieu dont la masse spécifique est 1 000 fois plus élevée que celle de l’air. Il en résulte qu’une contre-pression extérieure élevée s’exerce désormais sur les parties immergées. Elle s’exprime par le facteur $\rho g h$ (ρ masse spécifique de l’eau ; g accélération de la pesanteur ; h : hauteur), proportionnel à la hauteur d’eau entre la surface et son point d’action. Cette contre-pression entraîne par compression des réservoirs vasculaires des membres inférieurs, le transfert en direction du thorax du sang qu’ils renferment. Les veines caves et les cavités cardiaques sont, en quelques secondes, distendues par un apport de masse qui varie entre 600 et 750 ml. La pression auriculaire droite s’élève de 15 à 20 mmHg. Cette élévation de la pression auriculaire droite correspond à un relèvement du plan phlébotastique en direction céphalique, de 15 à 20 cm. Ce plan a été fixé expérimentalement par Gauer et Thron (1965), à la base de l’oreillette droite chez l’homme normal. Il correspond à ce plan perpendiculaire, à l’axe du corps en station verticale, où la pression hémodynamique moyenne est indépendante de la position corporelle.

La signification de ce plan phlébotastique PP est le mieux apparent lorsqu’on mesure la pression artérielle moyenne — moyenne fonctionnelle notamment, Pmf —, chez le sujet normal debout, en différents points anatomiques de l’arbre vasculaire. Par rapport à la valeur enregistrée sur le plan, égale à la pression mesurée à l’horizontale, une différence de pression est constatée, positive au-dessus de ce plan, négative en dessous de celui-ci. Cette différence est proportionnelle à la distance séparant le point de mesure du plan PP de référence. Elle équivaut à la pression hydrostatique intravasculaire exercée par le poids de la colonne sanguine $\rho g h_e$.

Il s’ensuit que la pression artérielle varie en un continuum régulier de l’extrémité céphalique à la sole plantaire : elle représente en chaque point la somme algébrique de la pression hémodynamique et de la pression hydrostatique correspondante. Sur la figure 1, le sujet est schématisé en position verticale, la taille faisant office d’ordonnée. Le plan phlébotastique est tracé en PP. Sur l’abcisse figure la pression artérielle moyenne fonctionnelle Pmf. La ligne verticale H représente Pmf/h, la valeur de la pression artérielle, telle qu’elle a été mesurée en position horizontale. Elle est égale en tout point de l’arbre artériel. En PP, elle est identique à la pression enregistrée en station verticale. De part et d’autre de PP, Pmf verticale (Pmfv) représentée par le trait plein qui coupe l’abcisse en D, c’est-à-dire Pmfv + $\rho g h_e$, ce dernier facteur correspondant au facteur hydrostatique sanguin. Il s’ajoute en dessous du plan. Comme ce facteur se soustrait au-dessus de PP, il en résulte qu’à hauteur du plan PC des sinus carotidiens, Pmf est réduite de — $\rho g h_s$ par rapport à Pmfv.

Puisque l’immersion correspond à la mise en place d’une contre-pression externe qui neutralise le facteur hydrostatique sanguin, la compression qui en résulte déplace PP de la distance h_d. C’est ce que montre le trajet de la flèche noire. La translocation sanguine rapide achevée et PP' en eau, le point où Pmf est égale Pmf est relevé de $+ \rho g h_e$. Dès lors, Pmf sur PC vaut désormais Pmf — $\rho g h_e$ où $h_e = h_s — h_d$. D’où le relèvement du plan phlébotastique déplace sur l’abcisse la valeur de Pmf dans le sens d’une augmentation. Elle est de nature purement passive (fig. 2).

* Institut Henrijean, Etablissement des Bains, 4880 SPA (Belgique).
RÉGULATION ORTHOSYMPATHIQUE EN IMMERSION

Dans la figure 2, sur le plan des sinus carotidiens, PC, le facteur hydrostatique, qui se soustrait de Pmf, est égal en eau à \(p g h_e \). Il est plus petit que \(p g h \). En air, la pression intrasinusale est plus élevée à l’horizontale et plus faible à la verticale. Cette hypotension intrasinusale libère l’activité orthosympathique, d’où l’explication de l’augmentation du tonus orthosympathique en station debout. Cette hyperactivité orthosympathique est maintenue toute la durée de la verticalité : la perturbation apportée au fonctionnement cardiovasculaire par les forces de pesanteur est alors permanente.

En eau, en immersion verticale, la chute de la pression intra-sinusale est réduite, passant de \(p g h_e \) en air à \(p g h_e \) en eau, en sorte que la stimulation orthosympathique est moindre. En témoigne la réduction de l’élimination urinaire de la noradrénaline en eau par rapport en air. Le fonctionnement cardiovasculaire se poursuit en bradycardie et en relaxation vasculaire périphérique. Il est mécaniquement soutenu par l’accumulation sanguine intrathoracique qui assure un meilleur remplissage ventriculaire, distend les fibres myocardiques et les amène en un point d’efficacité plus grande dans la zone de régulation hétérométrique, selon Frank-Starling.

La diminution de l’activité orthosympathique modifie d’autres variables que le tonus vasomoteur et la fréquence cardiaque. La vasodilatation rénale associée à la chute des résistances amène, au contact des appareils juxtagloméraux, l’intervention de Pmf devenue plus élevée, suite au relèvement du plan phlébostatique. Il s’ensuit une inhibition de la sécrétion de la rénine, d’autant plus marquée que les afférences venuilées au contact des cellules granuleuses des nerfs orthosympathiques rénaux sont elles-mêmes diminuées. Ainsi s’explique pour une part la réduction de l’aldostéronémie. Pour une part seulement, car il est actuellement démontré que la distension auriculaire, qui suit immédiatement l’entrée dans l’eau, entraîne la libération d’un atrio-peptide natriurétique, vasodilatateur et antagoniste des activités aldostéroniques (Guével et Gharib, 1986 ; Schnitzer et al., 1986). En résulte la diurèse d’immersion, avec natriurie, décrite depuis plusieurs décennies.

EFFICACITÉ DE LA RÉGULATION

La diurèse, significativement accrue dès la 5e minute qui suit l’immersion, peut rester plus élevée que la normale, jusqu’à la 5e heure. Elle est alimentée à la fois par le déplacement de la masse, mais aussi par les liquides interstitiels résorbés en excès à partir des tissus com-

Presse thermale et climatique, 1988, 125, nº 5.
primés. Dans la mesure où le bilan liquidien reste en faveur de l'augmentation de la pression intra-auriculaire et d'un relèvement du plan phlébostatique, la pression artérielle systolique générale reste élevée (Norsk et al., 1986). L'abaissement de la pression diastolique alors observée est en rapport avec la chute des résistances qu'entraînent en association, la perte du tonus orthosympathique et l'action dilatatrice de l'atrio-peptide (Bollermann et Brenner, 1986).

On doit finalement admettre que le fonctionnement cardiovasculaire de l'homme immergé est en remaniement permanent. Les phénomènes que provoque mécaniquement la contre-pression tégumentaire sont constamment réajustés par les adaptations subsequentes, dépendant de la perte du tonus orthosympathique et de l'élévation de la diurèse.

SUMMARY

Hydrostatic pressure acting on the dependant parts of the human body once immersed in thermo-indifferent water bath, displaces the blood volume which accumulates in the intrathoracic reservoirs. Auricular pressure is increased, with a lifting of the phlebostatic plane. Such a lifting causes an immediate increase in the systemic blood pressure. The corresponding increase of the intracarotid sinusual pressure provokes an inhibition of the orthosympathetic control of the cardio-vascular system: bradycardia, reduction in systemic peripheral vascular resistances, diminution of renin release.

This orthosympathetic inhibition is reinforced by the release of the atriopeptides.

REFERENCES

Rôle des hormones régulant la volémie (système rénine-angiotensine-aldostérone, ADH et ANF) dans l'immersion

**C. Gharib *; G. Gauquelin *; A. Guehl **

(Lyon, Toulouse)

Les effets rénaux de l'immersion ont été décrits et analysés en détail dans de nombreux travaux, en particulier ceux d'Epstein (Epstein, 1978; Greenleaf, 1984). Les résultats de ces études démontrent que l'immersion entraîne une élévation importante de la natriurèse, de la kaliurèse et de la diurèse. Ces effets peuvent s'expliquer à la lumière du réflexe de Gauer (voir revue de Gauer, 1980) par une redistribution de la masse sanguine à prédominance cardiothoracique (fig. 1) avec augmentation du volume sanguin central avec élévation de la pression veineuse centrale entrainant une inhibition du système rénine-angiotensine-aldostérone (SRAA) et une baisse de la sécrétion de l'hormone antidiurétique (ADH ou AVP).

Ce modèle a connu depuis une vingtaine d'années un regain considérable d'intérêt dans la mesure où il peut représenter un moyen de simulation de l'impesanteur des vols spatiaux, à côté des immobilisations au lit ou tête en bas (à des angulations de -6 à -10°) ou de l'utilisation de la combinaison anti-G qui a le même effet : une redistribution de la masse sanguine à prédominance cardiothoracique.

Tous ces modèles ont en effet en commun cette redistribution, avec stimulation des tachyéphoraux auriculaires et mise en jeu des systèmes hormonaux : SRAA et AVP.

* Groupe d’Etudes en Médecine et Physiologie Spatiales. Laboratoire de Physiologie, Faculté de Médecine Grange-Blanche, 8, avenue Rockefeller, 69373 LYON CEDEX 09.
** C.N.E.S., 31055 TOULOUSE CEDEX.

1 Il est à noter que cette natriurèse est d’autant plus importante que le sujet a un apport sodé important (Epstein, 1984).
2 Il faut ajouter que l’immersion sert de plus à simuler la vie dans l’espace puisque dans l’eau le poids apparent d’un individu n’est que de 1/10 de son poids normal. Il se trouve donc ainsi en imposanteur relative. Cette technique (fig. 2) sert à familiariser les futurs spatonautes avec la vie dans l’espace (J. Penot, 1984).

Pressse thermale et climatique, 1988, 125, n° 5.
Fig. 1. — Perturbations hormonales aiguës sous l'influence des variations de la volémie (réflexe de Gauer). La distension auriculaire à la suite de l'immersion entraîne une redistribution de la masse sanguine à prédominance cardiopulmonaire, une mise en jeu des récepteurs auriculaires et une inhibition de la sécrétion d'ADH (augmentation de l'excrétion urinaire d'eau), du SRAA (augmentation de l'excrétion urinaire de sodium) et une stimulation de la sécrétion des facteurs natriurétiques (en particulier du peptide atrial natriurétique : ANP).

Fig. 2. — Cosmonaute à l'entraînement dans un « hydrolaboratoire » (photographie de A. Pushkaryov - Fotokhrania - Tass - Moscou 1980).

Fig. 3. — Immersion sèche (cliché dû à l'obligeance du Dr. A. Kolovakaya - Institut des Problèmes médico-biologiques - Moscou).

Fig. 4. — Les principales actions rénales du peptide (facteur) atrial natriurétique (d'après Maoack). ALDO : aldostérone ; FG : filtration glomérulaire ; FF : fraction filtrée ; FSR : flux sanguin rénal ; LEC : liquide extracellulaire ; PAM : pression artérielle moyenne ; RPT : résistances périphériques totales ; R : résistances.

Malgré ces inconvénients pour le physiologiste, à savoir :
— durée de l'immersion ne pouvant dépasser quelques heures, du fait des phénomènes de macération (d'où utilisation de l'immersion sèche (fig. 3) par les Soviétiques) ;
— problèmes de thermorégulation ;
— difficultés des recueils urinaires ;
l'immersion est devenue un outil de choix pour l'étude de l'homéostasie circulatoire, plus spécialement pour simuler l'impesanteur des vols spatiaux.

Néanmoins, le réflexe de Gauer était loin d'expliquer tous les faits observés. En fait, il y a quelques années fut découvert un peptide d'origine auriculaire (Auriculine ou Atrial Natriuretic Peptide/Factor ou atriopeptine...) natriurétique et vasorelaxant (voir revue marc Cantin, 1985 et Maoack, 1985). Ce peptide augmente la filtration glomérulaire, inhibe directement la sécrétion d'aldostérone et indirectement (par l'augmentation de la filtration glomérulaire) celle de la rénine (fig. 4). Il inhibe aussi la sécrétion d'hormone antidiurétique.

Il a aussi des propriétés vasodilatatrices qui permettent de mieux expliquer un certain nombre de faits physiologiques et pathologiques.
IMMERSION ET BALNEATION

On peut constater que l’immersion est un modèle de recherches des modifications des rythmes cardiovasculaires de la diurèse et de la capacité rénale à éliminer l’eau et les sels engraisseurs. Les modèles de tension artérielle, de pression veineuse et de débit cardiaque sont utilisés pour étudier l’impact de l’immersion sur la circulation sanguine.

La figure 5 montre l’effet d’une immersion isocapnique sur la tension artérielle et la fréquence cardiaque. L’immersion est associée à une augmentation de la tension artérielle et à une diminution de la fréquence cardiaque.

La figure 6 présente les résultats d’une étude sur l’effet de l’immersion sur la perméabilité capillaire. L’immersion est associée à une augmentation de la perméabilité capillaire, ce qui peut avoir des conséquences sur la santé des personnes immersées.

Les bénéfices de l’immersion, tels que le bien-être et la détente, sont reconnus depuis longtemps. L’immersion peut également aider à la récupération après une activité physique intense.

Au cours de l’immersion, différents groupes ont pu démontrer son potentiel sur les performances physiques et sur la santé. Cependant, les effets de l’immersion sur la santé humaine sont encore peu connus.

Les études futures pourraient explorer davantage les effets de l’immersion sur la santé et les performances des personnes. Cela pourrait contribuer à une meilleure compréhension de l’immersion et à l’amélioration de la santé humaine.

REFERENCES

Hemorheological, metabolic and hormonal changes in man undergoing therapeutic water immersion

V. DIGIESI, S. FORNI, F. MASI, G. CERCHIAI, L. MANNINI, E. BALDI, B. DORIGO, P. GIANNOTTI *

(Florence)

Head-out water immersion in man is very important for therapeutic purposes and in order to study the effects of the shift of blood from the lower parts of the body to the thoracic circulation. The purpose of the present study is to report metabolic, hormonal and hemorheological effects in man of head-out water immersion at various temperatures. Special interest is put in water immersion carried out like therapeutic method.

MATERIALS AND METHODS

Head-out water immersion at nearly thermoneutral temperature

Three groups of subjects were examined. The first group (group A), for the study of aldosterone, prolactin, renin activity and diuresis, consisted in nine healthy male subjects with an age range 24-28 years; the second group (group B), for the study of beta-endorphin, consisted of nine normal volunteers (7 males and 2 females) with an age range 19-43 years; the third group (group C), for the study of diuresis, consisted of 31 patients, 26 males and 5 females, with an age range of 17-61 years, affected by sequel to fracture of the knee, elbow or clavicle, to meniscectomy, to shoulder or thigh bone luxation. The subjects were immersed in water for 30 minutes. For the major part of the time particpants were immersed to the neck in the upright position and for the remaining time in horizontal position. The time adopted was short in order to be similar to that of therapeutic rehabilitation in bathing-pool. This immersion period was preceded and followed by 30 min of quiet sitting or standing up outside the bathing-pool (prestudy and recovery period, respectively).

The bathing pool measured 19.5 by 9 m with the water from 1 to 2.9 m deep. The temperature of the water was 33.33 ± 0.17 °C (group A), 33.81 ± 0.12 °C (group B), 34.13 ± 0.12 °C (group C). Potable water of acqueduct of Florence was used, to this water was added 0.31 g/l NaOCl. The ambient temperature was 23.72 ± 0.81 °C (group A), 24.07 ± 0.3 °C (group B), 24.01 ± 0.5 °C (group C); the relative humidity 88 ± 1.4 % (group A), 77.78 ± 1.05 % (group B), 78.1 ± 1.2 % (group C) and the atmospheric pressure 764.9 ± 3.6 mmHg (group A), 763.8 ± 3.1 mmHg (group B), 764.0 ± 2.9 mmHg (group C).

Blood samples were collected from an antecubital vein immediately prior to immersion and 15, 30 and 60 minutes after the beginning of immersion.

Plasma renin activity and plasma aldosterone were evaluated by RIA using kit "RIANEM™ Angiotensin I (125,i)" and Cea-Sorin respectively. Serum prolactin was determined by sensitive radioimmunoassay using a kit Cea-Sorin. Plasma beta-endorphin was evaluated by RIA previous beta-LPH stripping and Sep-Pack cartridge methanold extraction. Na+ and K+ in the urine were determined using a flame photometer Radiometer FLM3 (Copenhagen).

For statistical analysis Student's t test for paired values was used.

Head-out water immersion in a bath at 38.4 °C

Seventeen healthy subjects (fourteen males and three females), between the ages of 21-65 years and mean age of 29.8 ± 2.6 years were examined, for the study of haemorheological and haemodynamic parameters, renin activity, beta-endorphin, aldosterone, cortisol, HGH, FSH, LH, TSH, T4, T3, and prolactin.

The subjects were immersed to the neck in the seated position for 30 min. Immersion period was preceded and followed by 30 min of quiet sitting outside the test-tank (prestudy and recovery period, respectively).

The test-tank measured 176 by 79.5 cm with the water 47 cm deep. The temperature of the water was 38.41 ± 0.04 °C (mean ± S.E.). Potable water of acqueduct of Florence was used, to this water was added 0.31 g/l NaOCl. Atmospheric pressure was 772.94 ± 2.85 mmHg, environmental temperature was 24.38 ± 0.39 °C, relative humidity 80.5 ± 1 %. These values did not change significantly during the experiments.

Blood samples were drawn from an antecubital vein, immediately before and after the immersion period and at the end of recovery period. The samples for hormonal measurements were collected in a chilled silicone coated Vacutainer tube for determinations in serum and in a chilled Vacutainer tube containing potassium EDTA for plasmatic determinations. The serum and the plasma were separated by a refrigerated (4 °C) centrifuge and stored at — 20 °C until assayed.

The heart rate was measured by counting the radial pulse. The blood pressure was measured by a Riva-Rocci sphygmomanometer.

Plasma beta-endorphin was measured by RIA, previous chromatographic extraction, using an INC, Minnesota, USA kit.

Plasma renin activity, plasma aldosterone, serum HGH and serum cortisol were evaluated by RIA using the following

* Third Institute of Clinical Medicine and Medical Therapy: Chair of Systematic Medical Therapy and Chair of Medical Hydrolagy, Service of Physical Medicine and Rehabilitation, Service of Nuclear Medicine — University of Florence and Local Sanitary Unit 10 D, 85 Morgagni Avenue, 50134 FLORENCE, Italy.

Presso thermale et climatique, 1988, 125, n° 5.
Serum FSH, serum LH and serum prolactin were measured by RIA using MIAA Biodata kits.

Serum T₄, T₃ and TSH were determined automatically by a ARIA HT, Becton Dickinson set.

Blood viscosity (the shear rates selected were 0.512 and 94.5 sec⁻¹) and plasma viscosity (the shear rate selected was 94.5 sec⁻¹) were determined by viscometers (Brookfield LVT and Contraves LS 30).

Erythrocyte filtration was carried out according to the procedure described by Reid et al. (1976). Red cell deformation index (RCDI) was obtained by the following formula:

\[\frac{60}{TTc \times C} \times 100 \]

Micro-hematocrit (M — HCT) determination was performed by centrifugation for 5 min at 15,000 g in capillary disposable tubes.

Red blood cell, leukocytes and platelets count, hematocrit (C — Hct) and MCV were determined by a Coulter Counter (Coulter Electronics, Model S).

In the presentation of the data, mean values are followed by the standard error of the mean. Data were evaluated statistically by using the analysis of variance, if a significant effect was detected, the Student t-test for paired comparisons was used to compare the basal value with the others.

Significant differences were those with P < 0.05.

RESULTS

Head-out water immersion at nearly thermoneutral temperature

Plasma aldosterone falls only after 30 min from the 0 — min value of 21.0 ± 3.96 pmol/100 ml to 13.56 ± 2.86 pmol/100 ml (P < 0.05); plasma renin activity decreases from the 0 — min value of 1.83 ± 0.36 ng/ml/h to 1.30 ± 0.26 ng/ml/h (P < 0.05) after 15 min and to 0.87 ± 0.17 ng/ml/h (P < 0.005) after 30 min, and after shows a light increase to 1.13 ± 0.27 ng/ml/h (P < 0.05) 30 min after the end of immersion. Serum prolactin falls during and immediately after water immersion from the 0 — min value of 223.41 ± 29.18 µg/ml to 199.02 ± 25.28 µg/ml (P < 0.05) after 15 min, 185.37 ± 21.84 µg/ml (P < 0.05) after 30 min and to 153.64 ± 20.83 µg/ml (P < 0.005) after the end of immersion. Plasma beta-endorphin levels significantly decrease during water immersion from a value of 12.71 ± 0.24 pmol/l to 7.46 ± 1.09 pmol/l at 15 min (P < 0.05) and to 6.08 ± 1.87 pmol/l at 30 min (P < 0.01). Thirty min after the end of immersion plasma beta-endorphin levels show a slight increase but are still significantly below the basal levels (P < 0.05).

As regards the groups A, sodium renal excretion significantly increases from a control value of 2.76 ± 0.24 mEq/30 min to 9.02 ± 1.63 mEq/30 min (P < 0.01) during water immersion; potassium renal excretion significantly increases from a control value of 1.21 ± 0.1 mEq/30 min to 2.67 ± 0.47 mEq/30 min (P < 0.025); urine volume increases from a control value of 19.65 ± 1.07 ml/30 min to 52 ± 9.5 ml/30 min (P < 0.01) during water immersion.

TABLE I. — Effect of head-out water immersion at nearly thermoneutral temperature on haematologic parameters, in healthy subjects

<table>
<thead>
<tr>
<th>Time (min)</th>
<th>0</th>
<th>Immersion</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>+ 30</td>
<td>+ 60</td>
</tr>
<tr>
<td>Beta-endorphin (pmol/l)</td>
<td>12.71 ± 6.08</td>
<td>6.98 ± 8.68</td>
</tr>
<tr>
<td>Renin activity (ng/ml/h)</td>
<td>1.82 ± 0.87</td>
<td>1.13 ± 1.18</td>
</tr>
<tr>
<td>Aldostéron (pm/100 ml)</td>
<td>21.00 ± 13.56</td>
<td>13.80 ± 2.67</td>
</tr>
<tr>
<td>Prolactin (µµ/µl)</td>
<td>223.41 ± 185.37</td>
<td>153.64 ± 21.84</td>
</tr>
</tbody>
</table>

Values are expressed as means ± S.E.

TABLE II. — Urinary Na⁺, K⁺ and urine volume during head-out water immersion at nearly thermoneutral temperature

<table>
<thead>
<tr>
<th></th>
<th>Control period</th>
<th>During immersion</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Normal subjects</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Na⁺ (mEq/30 min)</td>
<td>3.84 ± 0.53</td>
<td>7.67 ± 0.54</td>
</tr>
<tr>
<td>K⁺ (mEq/30 min)</td>
<td>1.89 ± 0.53</td>
<td>3.66 ± 0.54</td>
</tr>
<tr>
<td>Urine (m/30 min)</td>
<td>28.00 ± 4.35</td>
<td>64.91 ± 5.43</td>
</tr>
<tr>
<td>Patients with musculoskeletal diseases</td>
<td></td>
<td></td>
</tr>
<tr>
<td>With muscular work</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Na⁺ (mEq/30 min)</td>
<td>5.29 ± 0.53</td>
<td>11.44 ± 1.46</td>
</tr>
<tr>
<td>K⁺ (mEq/30 min)</td>
<td>2.75 ± 0.44</td>
<td>6.25 ± 0.54</td>
</tr>
<tr>
<td>Urine (m/30 min)</td>
<td>28.00 ± 4.35</td>
<td>64.91 ± 5.43</td>
</tr>
<tr>
<td>Without muscular work</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Na⁺ (mEq/30 min)</td>
<td>3.84 ± 0.53</td>
<td>7.67 ± 0.54</td>
</tr>
<tr>
<td>K⁺ (mEq/30 min)</td>
<td>1.89 ± 0.53</td>
<td>3.66 ± 0.54</td>
</tr>
<tr>
<td>Urine (m/30 min)</td>
<td>28.00 ± 4.35</td>
<td>64.91 ± 5.43</td>
</tr>
</tbody>
</table>

Values are expressed as means ± S.E.

TABLE III. — Effect of hot (38.4°C) water immersion on heart rate and blood pressure, in healthy subjects

<table>
<thead>
<tr>
<th>Time (min)</th>
<th>0</th>
<th>Immersion</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>+ 30</td>
<td>+ 60</td>
</tr>
<tr>
<td>Heart rate (l/min)</td>
<td>75.00 ± 88.19</td>
<td>73.75 ± 2.67</td>
</tr>
<tr>
<td>Blood pressure (mmHg)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Systolic</td>
<td>124.38 ± 110.62</td>
<td>116.56 ± 4.03</td>
</tr>
<tr>
<td>Diastolic</td>
<td>74.69 ± 55.31</td>
<td>73.75 ± 3.28</td>
</tr>
</tbody>
</table>

Values are expressed as means ± S.E.

Presse thermale at climatique, 1988, 125, n° 5.
TABLE IV. — Effect of hot (38.4 °C) water immersion on beta-endorphin, renin activity and some hormones, in healthy subjects

<table>
<thead>
<tr>
<th>Time (min)</th>
<th>Immersion</th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>0</td>
<td>+ 30</td>
<td>+ 60</td>
</tr>
<tr>
<td>Beta-endorphin (pmol/l)</td>
<td>4.94 ± 0.97</td>
<td>5.00 ± 0.99</td>
<td>3.77 ± 0.54</td>
</tr>
<tr>
<td>Renin activity (ng/ml/h)</td>
<td>1.92 ± 0.32</td>
<td>1.42 ± 0.14</td>
<td>2.15 ± 0.38</td>
</tr>
<tr>
<td>Aldostéronne (nmol/l)</td>
<td>0.26 ± 0.10</td>
<td>0.37 ± 0.08</td>
<td>0.37 ± 0.09</td>
</tr>
<tr>
<td>Cortisol (ng/ml)</td>
<td>80.93 ± 5.10</td>
<td>85.42 ± 5.14</td>
<td>85.17 ± 5.00</td>
</tr>
<tr>
<td>HGH (ng/ml)</td>
<td>4.07 ± 2.60</td>
<td>5.07 ± 3.60</td>
<td>7.79 ± 4.44</td>
</tr>
<tr>
<td>Prolactin (μU/ml)</td>
<td>159.46 ± 29.06</td>
<td>158.77 ± 31.25</td>
<td>140.69 ± 23.14</td>
</tr>
<tr>
<td>FSH (mIU/ml)</td>
<td>6.59 ± 0.70</td>
<td>5.78 ± 0.66</td>
<td>4.68 ± 0.74</td>
</tr>
<tr>
<td>LH (mIU/ml)</td>
<td>9.01 ± 1.83</td>
<td>7.12 ± 1.86</td>
<td>8.71 ± 2.03</td>
</tr>
<tr>
<td>TsRU (%)</td>
<td>97.23 ± 2.45</td>
<td>97.15 ± 2.54</td>
<td>96.85 ± 2.28</td>
</tr>
<tr>
<td>T4 (μg/dl)</td>
<td>7.14 ± 0.33</td>
<td>6.93 ± 0.26</td>
<td>7.32 ± 0.27</td>
</tr>
<tr>
<td>TSH (μU/ml)</td>
<td>1.57 ± 0.16</td>
<td>1.48 ± 0.13</td>
<td>1.45 ± 0.17</td>
</tr>
<tr>
<td>FTI</td>
<td>6.91 ± 0.40</td>
<td>6.70 ± 0.31</td>
<td>7.07 ± 0.29</td>
</tr>
</tbody>
</table>

Values are expressed as means±S.E.
* P < 0.01 for comparison with 0-min value.
* P < 0.005 for comparison with 0-min value.

Analogous results were obtained in the patients of group C, without or with muscular work during water immersion.

Head-out water immersion in a bath at 38.4 °C

The effects of hot water immersion on clinical and laboratory findings are shown in table III, IV and V. Head-out water immersion resulted in:
- a decrease in blood viscosity, red blood cells count, C — Hct and M — Hct, without significant changes of leucocytes and platelets count, MCV, plasma viscosity, erythrocyte filtration time and RCDI;
- a decrease in FSH and LH haematological concentrations;
- an increase in heart rate and a decrease in systolic and diastolic blood pressure.

No significant changes occurred in beta-endorphin, renin activity, aldosterone, prolactin, cortisol, HGH, TSH, Ts, Tt, haematematic levels and FTI values.

Thirty minutes after the end of immersion FSH and LH levels, heart rate, diastolic blood pressure and blood viscosity, measured at 0.512 sec⁻¹ shear rate, returned to pre-immersion values; systolic blood pressure showed a slight increase but was still significantly below the basal levels; erythrocytes count, C — Hct, M — Hct and blood viscosity, measured at 94.5 sec⁻¹ shear rate, significantly exceeded pre-immersion values.

DISCUSSION

The results obtained during nearly thermoneutral head-out water immersion demonstrate that plasma beta-endorphin, plasma renin activity, plasma aldosterone and serum prolactin decrease.

Urinary excretion of H2O, Na⁺ and K⁺ increases in normal subjects and in patients affected by musculoskeletal diseases, with or without muscular work.

During head-out water immersion in the upright position the depth-dependent haemodynamic or the floating in a horizontal position produce redistribution of blood volume. This central hypervolemia stimulates atrial and cardiopulmonary receptors. It is conceivable that such hemodinamyc changes increase atrial natriuretic peptide (Guell and Gharib, 1986; Schnizer et al., 1986) and decrease prolactin activity (Brennan et al., 1971) which cause the decrease of plasma aldosterone. The increase in central venous pressure stimulates arterial baroreceptors (Norsk et al., 1986) or cardiopulmonary mechanoreceptors, with presumably decrease of vasopressin. A suppression of urinary ADH excretion (Epstein et al., 1975; O’Hare et al., 1985) during water immersion in man was demonstrated, while suppression of plasma vasopressin was demonstrated by some authors (Norsk et al., 1985; Von Ameln et al., 1985; Norsk et al., 1986; Shiraki et al., 1986) but not observed by others (Greenleaf et al., 1983; Firket et al., 1984; Kravik et al., 1984).

Serum prolactin decrease and only some hypothesis are possible at the present state of knowledge. The relative rest, the exposure to air temperature lightly below the thermoneutral level (Adler et al., 1975) could be some possible causes of the phenomenon. The central hypervolemia, similar to that obtained with saline infusion (Bliss and Lote, 1982) could also play a role.

TABLE V. — Effect of hot (38.4 °C) water immersion on haematic and haemoreological parameters, in healthy subjects

<table>
<thead>
<tr>
<th>Time (min)</th>
<th>Immersion</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>0</td>
<td>+ 30</td>
</tr>
<tr>
<td>Coulter counter S:</td>
<td></td>
<td></td>
</tr>
<tr>
<td>— erythrocytes (10<sup>9</sup>/mm<sup>3</sup>)</td>
<td>5045 ± 123.88</td>
<td>4951 ± 123.45</td>
</tr>
<tr>
<td>— leukocytes (10<sup>9</sup>/mm<sup>3</sup>)</td>
<td>6285.45 ± 222.88</td>
<td>6327.73 ± 502.04</td>
</tr>
<tr>
<td>— MCV (μm<sup>3</sup>)</td>
<td>88.74 ± 2.31</td>
<td>88.63 ± 2.22</td>
</tr>
<tr>
<td>— platelets (10<sup>9</sup>/mm<sup>3</sup>)</td>
<td>241.50 ± 13.51</td>
<td>244.76 ± 17.05</td>
</tr>
<tr>
<td>— C-Hct (%)</td>
<td>43.59 ± 1.08</td>
<td>42.68 ± 0.95</td>
</tr>
<tr>
<td>— M-Hct (%)</td>
<td>45.2 ± 1.08</td>
<td>44.3 ± 1.01</td>
</tr>
<tr>
<td>Blood viscosity (cP):</td>
<td>22.62 ± 1.80</td>
<td>19.82 ± 1.42</td>
</tr>
<tr>
<td>94.5 sec<sup>-1</sup></td>
<td>4.68 ± 0.15</td>
<td>4.32 ± 0.13</td>
</tr>
<tr>
<td>Plasma viscosity (cP):</td>
<td>1.25 ± 0.01</td>
<td>1.25 ± 0.01</td>
</tr>
<tr>
<td>94.5 sec<sup>-1</sup></td>
<td>0.01 ± 0.01</td>
<td>0.01 ± 0.01</td>
</tr>
<tr>
<td>Erythrocyte filtration time TT (sec)</td>
<td>60.06 ± 7.19</td>
<td>65.57 ± 10.01</td>
</tr>
<tr>
<td>RCDI</td>
<td>0.49 ± 0.08</td>
<td>0.46 ± 0.07</td>
</tr>
</tbody>
</table>

Values are expressed as means±S.E.
* P < 0.005 for comparison with 0-min value.
P < 0.01 for comparison with 0-min value.
P < 0.02 for comparison with 0-min value.
P < 0.05 for comparison with 0-min value.
P < 0.05 for comparison with 0-min value.

Presses thermale et climatique, 1988, 125, n° 5.
Plasma beta-endorphin decrease and these results are consistent with the previously observed decrease of ACTH and PRL levels. Furthermore, (Kriska et al., 1983) during the thermoneutral head-out water immersion there is an increase of plasma dopamine and a decrease of norepinephrine, that could influence beta-endorphin levels. Moreover the role of atrial and cardiopulmonary volume receptors on beta-endorphin regulation needs further definition. The diuretic effect during thermoneutral head-out water immersion is mainly caused by the hormonal changes described above.

As regards the effects of hot-water immersion on normal man, it is common knowledge that heat is able to influence many hormonal functions. The effects vary in relation to thermoregulatory capacity of the subjects.

For instance, Follenius et al. (1979) found that a 90-min increase in ambient temperature from 28°C to 46°C did not alter the plasma prolactin levels of adult males despite a 0.65°C increase in mean rectal temperature and an increase in plasma aldosterone levels. Conversely, Mills and Robertshaw (1981) observed that exposure of normal man to 45°C db/26°C wb resulted in a 53% rise in plasma prolactin levels which reached a peak after 60 min of heat exposure and Adlerecreutz et al. (1976) observed that a 20-min exposure of man to a Finnish sauna (85-90°C) cause a 14-fold increase in plasma prolactin levels. Presumably we have not observed significant changes of serum prolactin owing to the temperature level in our experiment. It is common knowledge, moreover, that vasopressin, cortisol and aldosterone release in man is influenced by environmental temperature (Moore, 1971; Adlerecreutz et al., 1976; Okada and Kumayara, 1978; Follenius et al., 1979).

As regards mean hematic levels of cortisol they are not changed significantly, but a great variability was observed between the examined subjects. For instance, in a subject there was a 100% raise, while in another there was a 20% decrease.

Plasma renin activity and plasma aldosterone did not change in our experiment presumably owing to the temperature level not sufficiently elevated and the lower degree of cardiothoracic hypervolemia.

A matter of interest is the decrease in FSH and LH hematic concentrations, observed at the end of immersion, even if rapidly reversible. The American Medical Association Council on Scientific Affairs has recently noted that adequate studies of adverse effects on male reproductive function from working in hot environments do not exist (1984). Nevertheless Wathanabe (1959) has shown that the sperm counts of volunteers can be suppressed to a very low level for a considerable time by repeating heat treatments at three- or four-week intervals. Similarly, in men, semen specimens obtained in Houston, revealed a circannual rhythm of sperm concentration and total count, with lowest values in the summer mounts (Tiao et al., 1982). Nevertheless in these experiment the direct effect of heat on testicles must be considered.

Exposure of rats to a high environmental temperature (39°C) altered the nature of the LH in the blood (Wilson et al., 1985). Evidently the problem of relationship between heat and gonadotrophins release and metabolism needs further studies.

Plasma beta-endorphin did not change in hot-water immersion, presumably because the temperature level was not sufficiently elevated to determine a stress.

During hot-water immersion (38.4°C) blood viscosity, red blood cells count and haematocrit decrease. Presumably there is a relation between these phenomena, because the decrease of blood viscosity could be related to the decrease of haematocrit and red blood cells count. These alterations of haematocrit and red blood cells count could be caused by diffuse exchanges among the body fluids or by local modifications. 30 min after the end of hot-water immersion haematocrit, red blood cells count and blood viscosity at 94.5 sec\(^{-1}\) shear rate increase in comparison with basal values. These phenomena could be caused by the increase of sweat during water immersion, but one can’t exclude diffuse exchanges among the body fluids or local modifications. If dehydration is the cause, it is advisable to drink water during and after hot-water immersion.

Diastolic and systolic blood pressure decrease and heart rate increase during hot (38.4°C) water immersion, like is commonly known.

In conclusion the haemato, haemodynamic, and haemorheological effects described above in healthy volunteers are not very considerable and not able to produce pathologic consequences.

A matter of great interest could be the study of the same phenomena in elderly subjects, because the results could differ markedly from those observed in young subjects, or in patients using drugs affecting blood pressure, blood viscosity or haemocoagulation process, which could interfere with the haemato-haemorheological modifications induced by hot-water immersion.

REFERENCES

Régulation thermique lors de l’immersion : concepts de base

Y. Houdas *

(Lille)

L’organisme humain, comme tout organisme vivant, produit continuellement de la chaleur de par son métabolisme. Cette chaleur doit impérativement être perdue dans l’environnement, sinon l’organisme se mettrait progressivement en hyperthermie. Il y a donc continuellement échanges de chaleur entre l’organisme et son environnement. Or, sur le plan physique, le flux de chaleur échangé est fonction étroite de la différence de température entre les deux systèmes, c’est-à-dire entre l’organisme et son environnement. De ce fait, tout se passe donc schématiquement comme si l’ambiance enlevait de la chaleur à l’organisme, comme si elle avait un certain pouvoir de refroidissement. Pour que l’organisme maintienne sa température interne dans d’étroites limites autour de 37 °C, c’est-à-dire pour qu’il y ait équilibre thermique, il faut donc que le flux de chaleur enlevé par l’ambiance corresponde au flux de chaleur produit par l’organisme.

Or, les échanges thermiques sont régis par des lois physiques précises. On conçoit donc facilement combien l’organisme est, sur le plan thermique, strictement et immédiatement dépendant de son environnement. Que le pouvoir de refroidissement de l’ambiance s’accroisse brutalement et le déséquilibre thermique va immédiatement s’installer. Dans un premier temps, l’organisme tentera d’augmenter sa production thermique : il dispose à cet effet d’une fonction particulière qui assure la régulation thermique. Mais, si le déséquilibre est trop grand, les mécanismes de régulation pourront être dépassés et l’organisme se mettra en hyperthermie. Inversement, la production thermique du sujet peut s’élèver et le pouvoir de refroidissement de l’ambiance s’abaisser, alors l’organisme se mettra en hyperthermie.

MODALITÉS GÉNÉRALES DE TRANSFERT DE CHALEUR

Plusieurs modalités de transfert de chaleur participent habituellement à l’échange thermique organisme → ambiante.

Lorsque le transfert s’effectue entre deux milieux solides, on parle de conduction. L’intensité de l’échange dépend de la différence de température entre les deux milieux, mais également de la surface d’échange et des caractéristiques thermiques des milieux en présence. En position debout, ce type de transfert ne s’effectue guère que par la plante des pieds : c’est la raison pour laquelle on considère que cette modalité est de peu d’importance. A tort : car, couché sur un sol gelé par exemple, l’homme va perdre une grande quantité de chaleur du fait que la surface de contact est grande et que la différence de température est élevée.

Une grande partie de la chaleur métabolique est habituellement perdue dans l’air. Ce type de transfert entre un milieu solide et, en généralisant, un milieu fluide est appelé convection. Comme la conduction, la convection est également fonction de la différence de températures, de la surface d’échange et des caractéristiques thermiques des milieux ; s’y ajoutent deux autres facteurs : la vitesse du déplacement relatif entre l’organisme et le milieu fluide et la densité, ou la pression, du fluide. Il est banal en effet de constater qu’à température d’air identique, l’impression de froid est bien plus grande lorsqu’il y a du vent. Ce n’est point une donnée subjective ; c’est une réalité physique : du fait du déplacement de l’air, son pouvoir de refroidissement augmente et l’organisme perd plus de chaleur.

On décrit également une autre modalité de transfert de chaleur, plus complexe par les facteurs qui la conditionnent. C’est la radiation ou rayonnement. Il est également banal...
d’observer qu’un élément, métallique par exemple, dégage de la chaleur lorsqu’il est chauffé. Cette énergie calorifique est transportée par les ondes électromagnétiques qui constituent le rayonnement, principalement par le domaine de l’infrarouge. C’est le principe du chauffage par radiation. C’est également ainsi que nous parvient l’énergie solaire. Il existe donc des échanges de chaleur par cette voie. Ils ne seront pas développés ici car le rayonnement infrarouge est très facilement arrêté par l’eau.

Enfin, une autre modalité ne sera pas non plus décrite, et pour la même raison : c’est l’évaporation. Cette modalité est très différente des autres dans son principe. Elle est mise en œuvre par l’organisme humain pour lutter contre l’hypothermie. L’organisme produit de la sueur et l’évaporation de celle-ci dans l’ambiance, si cela est possible, entraîne une perte de chaleur pour l’organisme. Mais, dans l’eau, il ne peut y avoir évaporation.

TRANSFERTS THERMIQUES EN IMMERSION

Deux notions capitales se dégagent de l’étude des échanges thermiques d’un sujet immergé : 1) l’unicité des modalités possibles de transfert de chaleur, car seule existe la convection ; 2) l’importance quantitative de ces transferts, car le pouvoir de refroidissement de l’eau est considérablement supérieur à celui de l’air.

Convection en milieu aquatique

Dans l’eau, la conduction n’existe pas, sauf si le sujet s’appuie sur une paroi, rochers ou mur du bassin. La radiation est négligeable car l’eau est opaque aux rayons infra-rouges. Enfin, l’évaporation ne peut se faire en milieu aquatique. Il en résulte donc que seuls les échanges convectifs sont possibles.

Le flux de chaleur ainsi échangé, \(Q_c \), c’est-à-dire la quantité de chaleur qui passe dans l’unité de temps (généralement seconde ou heure selon les unités) est fonction : a) de la différence des températures, entre celle du sujet (plus exactement de sa peau), \(T_s \), et celle de l’eau, \(T_e \) ; b) de la surface d’échange, \(A \), c’est-à-dire pratiquement de la surface corporelle à l’exception de la face (sauf immersion totale) ; c) d’un coefficient dit de convection, \(h_c \) : ce coefficient dépend des caractéristiques thermiques de l’organisme d’une part et de l’eau d’autre part, de la vitesse de déplacement relatif entre le corps et l’eau (et même de la pression de cette dernière, c’est-à-dire de la profondeur). La relation qui décrit ces faits est, quant à sa forme générale, la même que celle qui régit les transferts par convection dans l’air ou dans tout autre fluide. C’est la Loi de Fourier :

\[
Q_c = h_c \cdot (T_s - T_e) \cdot A
\]

Importance des échanges convectifs

En immersion, les échanges convectifs non seulement constituent la seule modalité de transfert mais encore peuvent prendre une importance considérable. En d’autres termes, l’eau a un pouvoir de refroidissement très élevé. Tout d’abord, la surface d’échange est grande : c’est celle du corps entier, à l’exception de la tête si l’immersion n’est pas totale. Surtout, le coefficient \(h_c \) est fortement plus élevé que dans l’air, de l’ordre de 25 fois. La détermination de \(h_c \) est cependant difficile : elle est généralement faite de manière empirique. À titre d’exemple, \(h_c \) a une valeur de l’ordre de 45 W.m\(^{-2}\).\(^{\circ}\)C\(^{-1}\) pour un sujet nu immobile en eau calme. Cette valeur correspond à peu près au métabolisme de base, ce qui signifie que, pour un sujet immobile, l’équilibre en quelque sorte spontané a été obtenu lorsque la température de l’eau ne s’écarte guère de plus de 1 \(^{\circ}\)C de la température cutanée. En d’autres termes, la température de neutralité de l’eau calme est de l’ordre de 35 \(^{\circ}\)C. Dès que la température s’abaisse au-dessous de cette valeur, un refroidissement se produit qui implique une régulation de la part de l’organisme.

De plus, comme ce coefficient tient également compte de la vitesse relative du corps par rapport à l’eau, tout déplacement du corps, tel que le réalise la nage, accroîtra encore l’intensité du refroidissement ; même le simple fait, pour un sujet immobile en eau calme, de présenter un frisson, augmente ce coefficient qui peut atteindre alors 60 W.m\(^{-2}\).\(^{\circ}\)C\(^{-1}\).

Si, sur ces bases, on calcule la déperdition thermique d’un sujet standard (surface corporelle proche de 2 m\(^2\), immobile, immergé dans une eau considérée communément comme simplement fraîche, on arrive à des valeurs très élevées, de l’ordre de 2 000 kJ, soit approximativement 500 kcal, par heure.

Enfin, le coefficient \(h_c \) dépend également de la densité de l’eau ou plus exactement de sa pression ; la plongée en eau profonde est ainsi une cause supplémentaire d’augmentation du refroidissement.

La présence d’un vêtement ne modifie pas la forme générale de cette formule. Elle ne fait que diminuer \(h_c \), et par conséquent l’intensité des échanges. Mais, même un vêtement très isolant a des limites de protection relativement étroites.

MOYENS DE RÉACTION DE L’ORGANISME

Le pouvoir de refroidissement de l’eau étant intense, quels sont les moyens dont dispose l’organisme pour tenter de rétablir son équilibre thermique ?

Sur l’échange lui-même, il ne pourrait théoriquement agir que sur un seul des facteurs : sa température cutanée. Mais celle-ci dépend étroitement de la température de l’eau. L’immersion « piége » donc totalement l’organisme sur le plan thermique en lui imposant, de par sa température, un niveau donné de déperdition.

 Aussi, il n’existe guère qu’un seul moyen pour tenter de maintenir l’équilibre thermique : augmenter le métabolisme jusqu’à compenser, si cela est possible, la déperdition. On parle de thermogénèse au froid.

De manière purement physiologique, cette régulation met en œuvre le frisson thermique, phénomène réflexe qui, du moins chez l’homme, assure la quasitélalité de la thermogénèse au froid. Mais ses possibilités sont limitées : au maximum d’activité, le frisson thermique ne peut guère multiplier le métabolisme basal que par 3 ou 4, ce qui représente une production thermique horaire de l’ordre de 200 kcal.h\(^{-1}\)，soit 400 kcal.h\(^{-1}\) pour un sujet standard.

Ce chiffre est à rapprocher de celui de la déperdition dans de l’eau à 20 \(^{\circ}\)C cité plus haut. On voit donc que, dans une telle eau, un sujet strictement immobile arrive juste à maintenir son équilibre thermique par sa régulation réflexe.
Emodinamica periferica nella balneoterapia e nell'antroterapia

P.C. FEDERICI *
(Parma)

E' comune accezione che, durante le applicazioni termergiche, siano esse applicazioni di sabbie, impacchi con peloidi, bagni ipertermali o sedute antroterapiche, alla cospicua vasodilatazione periferica con iperemia nel mantello cutaneo, corrisponda vasocostrizione ed ischemia di corrispondente nel territorio dello splancnico. Tale nozione non corrisponde al vero e proprio con l'endoscopia a fibre ottiche ci hanno consentito di constatare che l'iperemia indotta da trattamenti termergiche è, specialmente quando si tratta di applicazioni estese, un'iperemia sistemica. Questo di per sé comporta atteggiamenti più prudenti, nella attuazione di tali applicazioni, in soggetti a rischio per predisposizione a fatti emorragici, quali soggetti con gastriti o postumi di broncopneumopatie emotivoiche di qualsiasi natura.

Ma riteniamo ancora si debba richiamare l'attenzione su altri dettagli che implicano risposte emodinamiche del tutto peculiari di alcune applicazioni termergiche.

Quando noi parlavamo di applicazioni psammoterapiche, di bagni termali o di impacchi estesi con peloidi, dobbiamo considerare che, alla periferia del corpo, si ha una cospicua vasodilatazione indotta dal calore e dalle proprietà revulsive del mezzo naturale impiegato. Tale vasodilatazione è tuttavia, fino a tanto che dura l'applicazione, controllata e contrastata da due importanti forze antagoniste rappresentate da:

— Pressione idrostatica, tanto più elevata quanto più alto è il peso specifico del mezzo e la sua plasticità. Tale pressione si esercita su tutto l'area cutanea a contatto con il mezzo, ma soprattutto sulle regioni superiori del corpo sottoposte a tale pressione con direzione perpendicolare all'asse cutaneo.

— Pressione di postura, quasi sempre trascurata ma di notevole importanza per l'edominamica. Il paziente infatti

* Istituto di Clinica Medica Generale e Terapia, Cattedra di Idrologia Medica, Università degli Studi di Parma (Italia).
riceve la sabbia o il peoloide in posizione sdraiata poggiando, con un abbondante terzo della propria superficie corporea, su un piano compatto e resistente sul quale grava con un peso corrispondente al proprio peso corporeo aumentato da quello della massa che lo copre.

Nel caso della balneoterapia in vasca singola, la parte inferiore del corpo aderisce ed appoggia più o meno estesamente sulla superficie rigida del fondo con una pressione che, per conto del peso corporeo ridotto della pressione idrostatica del liquido che, quando considererò, può portare all’alleggerimento e alla necessità di zavorrare il paziente per mantenerlo immerso.

Or bene, durante queste applicazioni si ha una vasodilatazione cutanea parziali periferiche, ma il vaso, in particolare i capillari e le arteriole, è contrastato, nella sua dilatazione, dalle pressioni idrostatica e di postura. Per cui il vaso si dilata sì, per quanto possibile, ma solo sul diametro perpendicolare a questa forza. Vale a dire: abbiamo dei vasi allargati nel senso trasversale alla direzione del flusso sanguigno ed estremamente ridotti nel loro diametro parallelo alla direzione della pressione idrostatica e di postura. Il sangue scorre dunque entro questi vasi “nastriformi” come una sottile lamina liquida; questo favorisce considerevolmente gli scambi termici e fisici-chimici tra il mezzo terapeutico che avvolge il corpo ed il sangue stesso, ma non riduce in egual misura le resistenze periferiche e la pressione arteriosa. Questo aiuta a spiegare le discordanze fra i reperti di Autori che hanno tentato di constatare una sensibile caduta pressoria durante tali applicazioni. Questa caduta in effetti non si ha per la vasodilatazione periferica, che manca in questa fase, ma eventualmente per la vasodilatazione profonda. Tutto questo viene bruscamente a cessare quando il paziente, liberato dalla sabbia o dal peoloide ad uscita dalla vasca, assume la posizione eretta. E’ in questo preciso istante che la vasodilatazione periferica diviene totale e reale, in quanto cessano contemporaneamente l’azione della pressione idrostatica e della pressione di postura ed è in questo preciso momento che si possono registrare brusche e pericolose cadute pressorie le quali possono portare il paziente ad una vera e propria scomparsa. E’ pertanto questo il momento in cui il paziente deve essere assistito con molta cura e le varie fasi: allontanamento degli involucri e dell’impacco, cambiamento di postura, devono essere compiuti in forma assistita e molto, molto graduale.

Il discorso cambia nel caso della particolare applicazione dei liman (liman) in strato sottile — come si pratica in Italia a Cervia e in alcune stazioni del Mar Nero quali Eforie Nord — in questo caso la pressione idrostatica è insignificante e pure la pressione di postura è esigua essendo il paziente in posizione eretta e libero di muoversi. In oltre è pure da considerare che per noi la vasodilatazione da ipertermia viene a mancare essendo queste applicazioni, praticate a moderate temperature, restate dunque in gioco. In questo caso, solo la vasodilatazione prevalentemente indotta dalle proprietà termale e vascolare di liman si compone. Questo spiega perché fenomeni come emodinamica siano estremamente rari nel corso e dopo queste applicazioni.

Ancora una situazione diversa si ha nelle grotte e nelle stufe. Qui la pressione idrostatica non entra in gioco e la pressione di postura è relativamente limitata in quanto è raro che la seduta sia attuata a paziente completamente sdraiato. Qui per altro l’ipertermia è intensamente avvinta sul corpo e persino la muscolatura delle vie respiratorie è coinvolta. L’ipertermia si instaura quindi precocemente ed è totale ed il momento più critico per l’emodinamica e per la genetesi si verifica dopo pochi minuti dallo sbarco, prima che la diafosi venga in soccorso della termoregolazione ed è proprio in questi primi 5-10 minuti che il paziente ha più necessità di essere sorvegliato e assistito.

Le nostre ricerche ci hanno consentito dunque di pervenire ad alcune considerazioni pratiche che pensiamo sia utile ricordare.

— La vasodilatazione indotta da applicazioni termiche è una vasodilatazione globale e perdura vanno prudenzialmente esclusi da tali applicazioni, specialmente se estese, tutti quei soggetti che possono essere considerati a rischio per le conseguenze di uno improvviso e cospicuo vasodilatazione: sindromi emorragiche, ulcera gastro-duodenale, colite ulcerosa, broncopneumopatia emofibiatrica, ecc.

— La vasodilatazione conseguente ad applicazioni termiche tipo: sabbia, fanghi, bagni ipertermali in vasca singola, è completa e totale solo al momento in cui cessa l’applicazione, momento che si rileva per la termoemodinamica del paziente il più delicato ed in cui si rende più necessaria un’adeguatezza e consapevole assistenza da parte del personale.

— Nelle applicazioni antirinfermiche invece il momento in cui l’emodinamica compie il massimo sforzo di adattamento e dunque critico per il paziente, è quello che precede l’inizio della diafosi, vale a dire: pochi minuti dopo l’inizio della seduta.

E’ ovvio che queste nostre considerazioni non mutano tutte le altre indicazioni e controindicazioni di questi trattamenti, ma concorrono a rendere più sicure le applicazioni stesse e tentano di contribuire all’interpretazione del loro meccanismo d’azione, evidenziando l’importanza delle particolari e contingenti condizioni dell’emodinamica nell’assetto biochimico e funzionale del paziente.

RIASSUNTO

E’ abbastanza comune ritenere che durante le applicazioni balneoterapiche termali, siano esse rappresentate da bagni in acque salatrici o da applicazioni di peido, si abbia costantemente una caduta della pressione sistolica generale per l’imponente vasodilatazione periferica; la stessa cosa è ritenuta accadere nelle applicazioni antirinfermiche termali. Esiste tuttavia una cospicua differenza fra i diversi tipi di applicazioni termiche e l’emodinamica periferica si comporta in modo diverso nelle varie fasi dell’applicazione, creando momenti particolari dei quali è molto importante tener conto nella pratica idrotermale.

RÉSUMÉ

On estime assez communément qu’en cours d’applications balnéothérapeutiques, représentées soit par des bains dans des eaux salatrices soit par des applications des boues, une chute constante de la tension systolique se manifeste à la suite de l’imposante vasodilatation périphérique; le même effet semble se manifester en cours d’applications antirhéumatiques thermiques. Toutefois, il existe une différence importante entre les différents genres d’applications thermiques et l’hémodynamique périphérique se comporte de façon différente pendant les diverses phases de l’application, en créant des moments particuliers qu’il faut prendre en considération en cours de pratique hydrothermale.

Prosse termale et climatique, 1988, 125, n° 5.
Session 5

Le thermalisme à travers le monde

Quelques aspects des cures thermales au Portugal : pathologie et techniques

A.V. CASTELO-BRANCO *
(Lisbonne, Portugal)

Au Portugal, les médecins qui travaillent dans les établissements thermaux sont nommés par le Ministre de la Santé, sous proposition des respectives Administrations, mais ils ne reçoivent aucun honoraire soit de l'État soit des Entreprises.

Les consultations médicales sont payées par les malades eux-mêmes, en fonction d'un barème qui est révisé annuellement.

Un des médecins est spécialement nommé pour remplir les fonctions de Directeur Clinique et, techniquement, il dépend du Ministère de la Santé.

La présente communication traitera du nombre des malades qui ont fréquenté les stations thermales, de la pathologie soignée et, encore, des techniques thérapeutiques utilisées, durant plusieurs années jusqu'en 1984, inclus.

L'une des obligations du Directeur Clinique est la présentation annuelle d'un Rapport qui doit inclure toutes les informations sur les activités qui se sont déroulées pendant l'époque thermale.

Grâce à ces normes légales, le Ministère de la Santé est en condition d'élaborer et de présenter des données nationales, se référant à une ou plusieurs années, sur les différents aspects de l'activité thermale.

NOMBRE D'INSCRIPTIONS

La figure 1 nous montre l'évolution du nombre des malades qui ont fréquenté les établissements thermaux depuis 1945 jusqu'en 1984.

Dans les années 40 et 50, le nombre des inscriptions a été inférieur à 45 000.

Grâce à la participation de la Sécurité Sociale dans le paiement des traitements thermaux, la courbe des inscriptions a enregistré une lente progression jusqu'à la première moitié des années 70 (± 65 000), mais, ultérieurement, en résultat du paiement total des transports et partiel du logement et de l'alimentation, cette courbe s'est accentuée, atteignant, en 1981, 92 000 inscriptions, correspondant à 1 p. cent de la population nationale.

* Avenue Infante Santo, 86-3º, B-Dº, 1300 LISBONNE, Portugal.

Prasse thermale et climatique, 1988, 125, n° 5.

<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>N°</td>
<td>%</td>
<td>N°</td>
<td>%</td>
</tr>
<tr>
<td>Aff. rhumatismales et de l’appareil locomoteur</td>
<td>21 821</td>
<td>23,55</td>
<td>30 748</td>
<td>29,47</td>
</tr>
<tr>
<td>Aff. de l’appareil digestif</td>
<td>29 739</td>
<td>34,55</td>
<td>29 487</td>
<td>28,28</td>
</tr>
<tr>
<td>Aff. des voies respiratoires supérieures et inférieures</td>
<td>13 187</td>
<td>15,32</td>
<td>18 534</td>
<td>15,85</td>
</tr>
<tr>
<td>Aff. du métabolisme</td>
<td>5 706</td>
<td>6,63</td>
<td>7 203</td>
<td>6,99</td>
</tr>
<tr>
<td>Aff. des reins et voies urinaires</td>
<td>4 619</td>
<td>5,37</td>
<td>6 739</td>
<td>6,46</td>
</tr>
<tr>
<td>Aff. cardiovasculaires</td>
<td>4 268</td>
<td>4,85</td>
<td>5 945</td>
<td>5,70</td>
</tr>
<tr>
<td>Aff. de la peau</td>
<td>2 668</td>
<td>3,13</td>
<td>3 297</td>
<td>3,16</td>
</tr>
<tr>
<td>Aff. nerveuses</td>
<td>1 197</td>
<td>1,40</td>
<td>1 603</td>
<td>1,53</td>
</tr>
<tr>
<td>Aff. gynécologiques</td>
<td>532</td>
<td>0,62</td>
<td>421</td>
<td>0,40</td>
</tr>
<tr>
<td>Autres affections</td>
<td>2 241</td>
<td>2,60</td>
<td>2 775</td>
<td>2,18</td>
</tr>
</tbody>
</table>

Peu à peu, on a commencé à noter un intérêt grandissant de la part du Département du Tourisme vis-à-vis du thermalisme portugais, créant une regrettable confusion entre thermalisme et tourisme de Santé.

Parallèlement, le Département du Tourisme a tenté de devenir le coordonateur du thermalisme portugais, recevant, d’ailleurs, l’appui des entreprises thermales.

Ainsi, à partir de 1981, le Ministère de la Santé, déjà en difficulté face à l’augmentation galopante des prestations de santé, a été amené à une attitude de « rétraction », en suspendant le paiement du transport et du logement et en réduisant sa participation dans le paiement des traitements thermaux.

Comme conséquence, entre 1981 et 1984, on a constaté une chute de 10 000 inscriptions.

Cet exemple négatif nous permet de mettre en évidence que les activités touristiques doivent être considérées comme essentielles comme activités complémentaires, mais il nous semble que nous ne devons pas accepter que les objectifs du thermalisme puissent être confondus avec ceux du Tourisme et, encore moins, que le thermalisme soit dirigé par les Départements du Tourisme.

Les Affections des Voies Respiratoires, supérieures et inférieures, viennent en troisième lieu, indiquant une légère évolution positive, de 15,32 p. cent à 18,86 p. cent.

Les Affections du Métabolisme, des Reins et Voies Urinaires et les Cardiovasculaires représentent, ensemble, 16 p. cent du total, montrant une légère diminution depuis 1976 (16,96 %) jusqu’en 1984 (15,51 %).

Les Affections de la Peau, les Affections Nerveuses et les Affections Gynécologiques ont eût une faible incidence, n’atteignant pas, ensemble les 4 p. cent.

Finalement, le dixième groupe, celui qui englobe les affections de très rare présence, a représenté une faible participation entre 2,60 p. cent en 1976 et 1,11 p. cent en 1984.

PATHOLOGIE THERMALE

L’étude des diagnostics des maladies qui ont été traitées dans les Stations Thermales portugaises, pendant la période de neuf ans, entre 1976 et 1984, nous permet de constater une certaine évolution dans la nosologie thermale.

La présentation des diagnostics est faite au moyen des dix principaux groupes d’affections, le dernier desquels représente un ensemble d’affections d’incidence mineure (tableau I).

La lecture de celui-ci nous permet les déductions suivantes :

Les Affections Rhumatismales et de l’Appareil Locomoteur sont devenues la première raison de recherche d’une cure thermale, prenant la première place dans l’ensemble de la nosologie thermale et, passant, dans la période en étude, de 23,55 p. cent à 35,01 p. cent.

Les Affections de l’Appareil Digestif représentent encore la deuxième nécessité de cure thermale, mais leur participation a baissé de 34,55 p. cent à 26,03 p. cent.

L’étude des diagnostics des maladies qui ont été traitées dans les Stations Thermales portugaises, pendant la période de neuf ans, entre 1976 et 1984, nous permet de constater une certaine évolution dans la nosologie thermale.

La présentation des diagnostics est faite au moyen des dix principaux groupes d’affections, le dernier desquels représente un ensemble d’affections d’incidence mineure (tableau I).

La lecture de celui-ci nous permet les déductions suivantes :

Les Affections Rhumatismales et de l’Appareil Locomoteur sont devenues la première raison de recherche d’une cure thermale, prenant la première place dans l’ensemble de la nosologie thermale et, passant, dans la période en étude, de 23,55 p. cent à 35,01 p. cent.

Les Affections de l’Appareil Digestif représentent encore la deuxième nécessité de cure thermale, mais leur participation a baissé de 34,55 p. cent à 26,03 p. cent.

Les Affections des Voies Respiratoires, supérieures et inférieures, viennent en troisième lieu, indiquant une légère évolution positive, de 15,32 p. cent à 18,86 p. cent.

Les Affections du Métabolisme, des Reins et Voies Urinaires et les Cardiovasculaires représentent, ensemble, 16 p. cent du total, montrant une légère diminution depuis 1976 (16,96 %) jusqu’en 1984 (15,51 %).

Les Affections de la Peau, les Affections Nerveuses et les Affections Gynécologiques ont eût une faible incidence, n’atteignant pas, ensemble les 4 p. cent.

Finalement, le dixième groupe, celui qui englobe les affections de très rare présence, a représenté une faible participation entre 2,60 p. cent en 1976 et 1,11 p. cent en 1984.

Evolution des trois Principaux Groupes de Maladies

Sur la figure 2, nous pouvons voir, d’une façon plus évidente, l’évolution des trois principaux groupes de maladies.

Les maladies rhumatismales et ostéarticulaires, à partir de 1976, elles ont montré une incidence relative de plus en plus importante, probablement en conséquence d’une nécessité, chaque jour plus accentuée, de soins de réhabilitation matricielle, pour laquelle plusieurs techniques thermales sont spécialement indiquées.

Les maladies de l’appareil digestif offrent une ligne légèrement descendante, peut-être, en accord avec l’amélioration des connaissances et des pratiques d’hygiène alimentaire.

Evidemment, ces considérations d’ordre épidémiologique n’ont qu’une valeur limitée, n’ayant pas été possible de faire des études comparatives entre la nosologie thermale et la morbidité nationale.

Presse thermale et climatique, 1988, 125, n° 5.
Sous-groupes nosologiques

Nous reconnaissions qu’il serait du plus grand intérêt d’approfondir l’étude des sous-groupes qui composent les principaux groupes de diagnostics que nous avons organisés pour la présentation de la nosologie thermale portugaise.

Nous l’avons essayée, mais nous ne l’avons réussie que d’une façon incomplète.

En ce qui concerne les rhumatismes et autres affections musculosquelettiques nous les avons décomposées en trois sous groupes (tableau II).

— Affections rhumatismales proprement dites:

Ce premier sous-groupe a été composé, essentiellement, par les rhumatismes chroniques — inflammatoires, dégénératifs et abarticulaires — et représente une forte incidence, entre 80 p. cent et 98 p. cent, ce qui nous permet de déduire que les médecins-hydrologues portugais ordonnent le traitement thermal, de préférence, face à une suspicion d’étiologie rhumatismale.

— Autres affections musculosquelettiques:

Ce deuxième sous-groupe a été composé par toutes les autres manifestations pathologiques, notamment de la colonne vertébrale, sans caractéristiques rhumatismales ; sa participation est faible, entre 2 p. cent et 14 p. cent, ce qui renforce l’idée antérieure qu’au Portugal le traitement thermal n’a pas encore intéressé la pathologie ostéarticulaire non-rhumatismale.

— Troubles de l’appareil locomoteur:

Ce troisième sous-groupe a été composé, presque exclusivement, par les séquelles motrices des lésions traumatiques et des accidents vasculaires cérébraux (AVC) et, au contraire de ce que l’on pouvait s’attendre, tenant compte de l’augmentation impressionnante de ces situations dans les statistiques sanitaires de tous les pays développés, leur participation est très réduite, entre 2 p. cent et 6 p. cent, ce qui signifie, peut-être, l’inadaptation des structures thermales portugaises pour ce type de thérapeutique de réhabilitation.

En ce qui concerne les Affections de l’Appareil Digestif, nous les avons décomposé en quatre sous groupes : hepato-vesiculaires, gastroduodénales, intestinales et autres (tableau III).

La plus forte incidence appartient aux affections des intestins, notamment les « coûts en général » et les « côlons iritables », avec un taux d’incidence autour de 60 p. cent.

Ensuite, viennent les affections hépatovésiculaires, notamment les hepatopathies, avec un taux de participation autour de 35 p. cent.

Affections des Voies respiratoires

En ce qui concerne les affections des voies respiratoires supérieures et inférieures, nous avons voulu connaître la participation des affections ORL (sinusites, pharyngites, rhinites, etc.) et celle des broncho pneumopathies (tableau IV).

Les taux d’incidence s’équilibrent.

TECHNIQUES THERMALES

Le tableau V, concernant une période de 1975 à 1984, nous permet d’apprécier, dans son ensemble, les moyens par lesquels la thermalisme Portugais a été pratiqué.

Les techniques classiques de la Balnéothérapie (bains d’immersion, bains spéciaux, douches, etc.) ont dominé la crénotechnique portugaise (48,08 % en 1975 et 41,39 % en 1984) ; les techniques ORL (inhalations, aerosols, nébulisations, etc.) ont représenté 27,03 p. cent en 1975 et 33,79 p. cent en 1984 ; les techniques de Balnéothérapie Générale et d’ORL ont atteint, ensemble, 75 p. cent du total des traitements.

Les techniques spéciales (entérocyse, goutte à goutte rectal, irrigation vaginale, injections intramusculaires de

<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>N°</td>
<td>%</td>
<td>N°</td>
<td>%</td>
</tr>
<tr>
<td>1) Bains d'immersion</td>
<td>265 338</td>
<td>22,67</td>
<td>414 917</td>
<td>22,77</td>
</tr>
<tr>
<td>2) Bains spéciaux</td>
<td>44 849</td>
<td>3,83</td>
<td>43 780</td>
<td>2,40</td>
</tr>
<tr>
<td>3) Douche</td>
<td>252 571</td>
<td>21,59</td>
<td>362 903</td>
<td>19,91</td>
</tr>
<tr>
<td>4) Trait. spé. (intest., gynéc., etc.)</td>
<td>562 749</td>
<td>48,08</td>
<td>621 500</td>
<td>45,08</td>
</tr>
<tr>
<td>5) Pélathérapie</td>
<td>149 500</td>
<td>12,77</td>
<td>133 158</td>
<td>7,31</td>
</tr>
<tr>
<td>6) Pulv. et irrig. nas. et pharinge</td>
<td>43 718</td>
<td>3,73</td>
<td>81 589</td>
<td>4,48</td>
</tr>
<tr>
<td>7) Inhalations, aérosols, nébul.</td>
<td>114 794</td>
<td>12,29</td>
<td>134 747</td>
<td>14,34</td>
</tr>
<tr>
<td>6 + 7</td>
<td>172 657</td>
<td>14,75</td>
<td>388 281</td>
<td>16,02</td>
</tr>
<tr>
<td>8) Electrothérapie</td>
<td>316 451</td>
<td>27,03</td>
<td>629 714</td>
<td>34,56</td>
</tr>
<tr>
<td>9) Kinésithérapie</td>
<td>94 387</td>
<td>9,06</td>
<td>121 948</td>
<td>6,89</td>
</tr>
<tr>
<td>TOTAL GENERAL</td>
<td>3 709</td>
<td>0,33</td>
<td>34 152</td>
<td>1,98</td>
</tr>
</tbody>
</table>

Nombre de traitements/malade:
- 1975: 1 170 514
- 1978: 1 822 092
- 1981: 2 423 637
- 1984: 2 291 843

Traitements « per os »:
- 1975: 18,4
- 1978: 22,9
- 1981: 26,4
- 1984: 28,1

Malgré l’augmentation progressive de ces deux modalités thérapeutiques, elles n’ont pas été représentées en 1984 que 6,41 p. cent et 3,66 p. cent, respectivement, du total des traitements.

Les Cures de boisson ont été poursuivies, en 1984, par 75 p. cent des malades.

NOMBRE DES TRAITEMENTS

L’une des facettes, parmi les plus favorables, de l’évolution du thermalisme portugais, a été la multiplication du nombre des traitements.

Excluant les Cures de Boisson, en 1975, chaque malade faisait 18,4 traitements par époque thermale, ce nombre est monté à 28,1 p. cent en 1984 ; cette augmentation n’a pas été le résultat du prolongement du séjour, mais de la soumission à plusieurs techniques thérapeutiques.

Jusqu’en 1975, la courbe des traitements était parallèle à celle des inscriptions ; ultérieurement, cette courbe des traitements s’est éloignée nettement de celle des inscriptions, amenant une amélioration très sensible dans le bilan économique du Thermalisme portugais.

Le séjour thermal ayant été, en moyenne, de deux semaines, chaque malade a fait, environ, 60 traitements, cure de boisson incluse (fig. 3).

CONCLUSIONS

Considérant le fait que les affections rhumatismales occupent la première place dans la nosologie thermale portugaise, on pourrait s’attendre à une plus importante participation de la Pélathérapie et de la Kinésithérapie.

RÉSUMÉ

Les inscriptions dans les stations thermales portugaises qui, dans les décennies 60 et 70, avaient augmenté de...
100 p. cent, ont souffert, entre 1981 et 1984, une chute d'environ 12 % passant à 0,8 inscriptions pour 100 habitants.

Etudiant la pathologie traitée dans les stations thermales portugaises, entre 1976 et 1984, on a pu conclure que les affections rhumatismales et de l'appareil locomoteur, les affections de l'appareil digestif et les affections des voies respiratoires représentent, ensemble 80 p. cent de la nosologie thermale :

— les affections rhumatismales et de l'appareil locomoteur ont pris la première place, passant, dans cette période, de 23,55 à 35,01 p. cent ;
— les affections de l'appareil digestif sont descendues de 34,55 à 26,03 p. cent ;
— les affections des voies respiratoires sont montées de 15,32 à 18,86 p. cent ;
— les autres affections n'ont pas montré de déviation significative.

Etudiant les techniques thermales appliquées de 1975 à 1984, on constate ce qui suit :

— la balnéothérapie (bains d'immersion, bains spéciaux, douches, etc.) a dominé la crênotecnie portugaise : 41,39 p. cent en 1984 ;
— les Techniques ORL (inhalations, aérosols, nébulisations, etc.) ont représenté 33,79 p. cent en 1984 ;
— la participation de la pelothérapie et de la kinesithérapie n'est pas très élevée, en 1984, à des taux de 6,41 p. cent et 3,66 p. cent respectivement ;
— les cures de boisson ont été poursuivies en 1984, par 75 p. cent des malades.

Le séjour thermal ayant été, en moyenne, de deux semaines, chaque malade a fait, environ, 60 traitements, cure de boisson incluse.

L'avenir du thermalisme en Belgique

P. de MARCHIN *
(Spa, Ostende, Chaudfontaine, Belgique)

A part l'appellation officielle Clinique Spécialisée Thermalisme, seule formule de remboursement des séjours (tombée elle-même récemment dans le colimateur gouvernemental), pas de reconnaissance spécifique du thermalisme en Belgique.

Assimilation à la physiothérapie ordinaire pour les soins d'où remboursement nettement insuffisant et pertes dans la gestion des établissements thermaux où les prestations individualisées sont forçément onéreuses.

Depuis les dernières mesures d'économie, les cliniques thermales risquent de rétrograder au stade des maisons de repos (alors qu'elles ont un équipement très scientifique notamment au point de vue diagnostic). Il y a là un vrai risque de mort.

A la base de cela : la dette de l'Etat, certaines rivalités politiques et la méconnaissance des services qui peut rendre le thermalisme. Les Pouvoirs Publics ainsi que les marchands d'eau embouteillée et le corps médical en général n'ont qu'un intérêt assez faible pour le thermalisme en Belgique. Les retombées économiques, ne serait-ce que dans le budget des soins de santé, ne sont pas connues.

Cependant la véhétude de certains bâtiments thermaux et même une démolition conduisent à l'heure des choix et le thermalisme classique, à tort selon nous est, en perte de faveur (par exemple à Chaudfontaine) au profit de formules à dominance touristique et à séjour court.

La médecine s'expose à y perdre que l'avenir du thermalisme passe au contraire par un sérieux médical renforcé et s'expose aussi à renoncer à des traitements éprouvés, ce qui est un événement historique douloureux. Il y a là une option fondamentale et nos assises devraient permettre de dégager la meilleure voie pour les malades ; et de constituer des dossiers solides pour infléchir les décisions des hommes politiques.

Si le tableau est sombre en Belgique (puisque Belgique il y a encore), ailleurs, là où règne la prospérité thermale, que les médecins ne s'endorment pas sur leurs lauriers et qu'à côté de la recherche scientifique ils jouent leur rôle civique en se souciant des menaces d'un monde toujours en mutation. J'ai cru longtemps ce mot optimiste d'Anatole France « Nous aurons raison parce que nous avons raison ». Mais la situation du thermalisme en Belgique ébranle un peu ma confiance et le thermaliste d'âge mûr, en moi, n'échappe pas à une certaine morosité.

On verrait au mieux l'avenir dans le cadre suivant.

La médecine thermale n'a plus un poids suffisant pour vivre seule. La mettre à la remarque du tourisme la
Kurorte als integraler Teil des allgemeinen Gesundheitsschutz-Systems im Lichte 40 « Jüngerer polnischer Erfahrungen »

G. STRABURZYSKII *
(Poznan, Poland)

Dies bedeutet, dass jeder Arzt, unabhängig davon in welchem Glied des Gesundheitsdienstes er beschäftigt ist, die Kurortbehandlung im individuellen Plan der Behandlung des Kranken berücksichtigen kann.

Das Wesen der Kurortbehandlung in Polen ist ein komplexes medizinisches Vorgehen, das auf Physiotherapie, vor allem vollem Bereich der Balneotherapie, klimatherapie, Psychotherapie und Diät beruht, dagegen nur in unentbehrlichen Fällen Pharmakotherapie. Im Vergleich mit anderen Ländern weist die polnische Kurortbehandlung einige Eigentümlichkeiten auf. Vor allem wirkt sie auf Grund des parlementaren Gesetzes über Kurorte und Kurorth therapie.

Damit eine Ortschaft auf die Liste der Kurorte trifft muss sie zuvor vom Ministerialrat als Kurort anerkannt werden. Diese Anerkennung erfolgt nachdem vom Minister

* Institut of spa medicine and physiotherapy, 60569 POZNAN, ul. Szamotulskiego 84 (Poland).
der Gesundheit und sozialer Fürsorge durch Vermittlung
des Institutes für Kurortmedizin die therapeutischen Eigen-
schaften natürlicher Kurortmittel /wässer und Peloide/ des
Klimas und der Landschaft festgestellt worden sind.

Gegenwärtig kommen in den 36 Kurorten und 25 Ortscha-
ften auf welche einige Vorschriften des Kurortgesetzes
ausgedehnt worden sind jährlich 800 000 Kranke darin
105 000 in Kurortkliniken. 300 000 Personen aus 1 Million
von Erholungsgästen und 1 Million Touristen die alljährlich
unsere Kurorte besuchen werden ambulatorisch behandelt.

Um die natürlichen lokalen Heilmittel optimal zu nutzen
wird in jedem polnischen Kurort nur eine Gruppe von
Krankheiten behandelt. Allgemein hat man 8 medizinische
Hauptschichten angenommen

— Rheumatologische und Bewegungsorgane Krankheiten,
— Krankheiten des Kreislaufsystems,
— Krankheiten des Atmungssystems,
— Krankheiten des Verdauungssystems,
— Krankheiten des Systems innerer Sekretion und des
Metabolismus,
— Urologische Krankheiten,
— Hautkrankeheiten,
— Gynekologische Krankheiten.

Seit dem Jahr 1967 besteht eine Einteilung der Institu-
tionen der Kurorthterapie welche die Unterschiede der
Intensität des medizinischen Vorgehens berücksichtigt.
Nach dieser werden in den Kurortambulatorien diese Patien-
ten behandelt die nicht in den Sanatorien oder Kurortka-
huhäusern wohnen. In den Sanatorien werden vor allem
chronische Krankheiten behandelt.

Aufgabe der Kurortkrankenhäuser ist die Rehabilitation
der Kranken die vorher in Krankenhäusern oder spezialisti-
schen Ambulatorien im Wohnort behandelt worden sind.
Dieses einzige in der Welt Organisationsssystem der Heilan-
stalten in den Kurorten hat sich bestens bewährt. Ähnlich
einzige ist das polnische System der Fristlosen Behand-
lung von Kinderkrankheiten im Kurort und das entstehende
System der frühen Rehabilitation im Kurort von Kranken
nach Herzinfarkt. Wegen verschiedener Aufgaben die,
de oberwähnten drei Heilanstalten zu erfüllen haben
besitzen sie ein verschiedenes inneres Regime das entspre-
chende Vorschriften regulieren und verschiedene Intensität
des medizinischen Vorgehens. In den Sanatorien werden
chronische Krankheiten mit nicht weit vorgedrängten
Veränderungen der Organe behandelt in Perioden ohne
Verschärfungen. Sie sichern dem Kranken eine ununterbro-
cene ärztliche und Krankenschwesternpflege. Die Kranken
werden in die Sanatorien von Ärzten des allgemeinen Gesund-
heitsdienstes und von Konsultaten für Angelegenheiten der
Kurorththerapie kwaufielt die die Einweisungscheine erha-
lten sie von den Gewerken. In die Kurortrauhenhä-
üsren werden die Kranken von Kommissionen für Kurortho-
рапie der einzelnen WOJewodschaften kwaufielt und zwar
unmittelbar nach ihrer Behandlung in Krankenhäusern oder
spezialistischen Ambulatorien im Wohnort. Die Behandlung
in den Kurortkrankenhäusern erfolgt im Rahmen der Arbei-
tsfähigkeitsperiode. Ihre Aufgabe ist die Abkürzung der
Rekonvaleszenzzeit und Vorbereitung des Kranken zum akti-
ven Leben dort wo er vor der Erkrankung lebte, damit hat
sie also den Charakter einer Rehabilitation.

Die Sanatorien sind nicht gänzlich profiliiert. Die Kuror-
tkrankenhäuser dagegen wirken nur im Rahmen einer einzige-
en medizinischen Disziplin. So gibt es dann kardiologische,
pulmonologische, gastrologische, rheumatologische, orthope-
dische Kliniken u.w.w.

Man muss unterzeichnen dass alle Kurortkrankenhäuser,
ein Teil der Sanatorien und die physiotherapeutische Anstalt
im Kurort Eigentum des Ministeriums für Gesundheit und
soziale Fürsorge sind. In den einzelnen Kurorten finden sie
Staatliche Kurortbetriebe. Dagegen gehört etwa die
Hälfte der Sanatorien den Gewerkschaften oder anderen
Ministerien. Die Aufsicht über alle Heilanstalten des Kurer-
tes führt der Chefarzt des Kurortes, der dem Gesundheits-
minister unterstellt. Die Oberaufsicht über Kurorththerapie
führt der Gesundheitsminister, welcher die Richtung
des Wirkens und der Entwicklung der Kurorththerapie bestimmt.
Er überwacht das Niveau der prophylaktischen und Behand-
 lungsdiene in den Kurorten und auch den Schutz der
natürlichen Bedingungen und die entsprechende Gestaltung
der Umweltfaktoren. Er bestimmt die einzelnen Grundsätze
der Nutzung natürlicher Bedingungen in den einzelnen
Kurorten für die Behandlung bestimmter Krankheiten
und weist die Wirkungsrichtungen für den Chefarzt im Kurort.

Die qualifizierung der Kranken zur Kurorthbehandlung
stützt sich auf die Indikationen und Kontraindikationen zur
Kurorthbehandlung von Erwachsenen, Kinder und der Jugend
die vom Institut für Kurortmedizin bearbeitet wurden und
stets aktualisiert werden. Das Institut führt im Auftrage
des Ministers für Gesundheit und soziale Fürsorge serwis-
rische Aufsicht über die polnische Kurorthherapie.

Natürliche Kurmittel und ihre Anwendungen

Polen ist reich an Heilwässern verschiedener Zusammen-
setzung und Mineralisation. Darunter sind auch Thermal-
wässer wobei ihre höchste Temperatur nicht viel über 40°C
ist. Die Region der Karpaten und des Vorgebirges besitzt
Suol arunter Calcium, Jodid und Bromidwasser. Dort
treten auch Sulphidwasser auf und Säuerlinge — Hydrogen-
karbonat — Natrium, Calcium bzw. Magnesiumwasser,
so wie NaC1-Wasser in verschiedenen Kombinationen. Im
mittleren Tieflandgebiet des Landes das sich vom Balti-
schen Meer hinzieht finden sich vorwiegend NaC1 Wasser.

Im Gebiet der Sudeten entlang der südwestlichen Grenze
zwischen Polen, Tschechoslowakei und der D.D.R. treten
schwachmineralisierte radicative und Sulphidwässer ferner
auch Säuerlinge auf.

Reich ist auch das Vorkommen von Heilmooren — Humo-
liten die als einziges Peloit in den polnischen Kurorten
angewendet werden. Ausser sogenannten klassischen Moor-
behandlungen wird auch Moorpaste angewandt die durch
Homogenisation des Moores Iten wird und einen
hohen Zersetungsgrad besitzt. Mit ihrer dünnen isother-
mischen Schicht wird der Körper des Kranken bedeckt.

Die Kurorte in Polen liegen im Tieflandklima darunter
Seeklima Mittelgebirgsklima /bis zur Höhe von 399 Metern
über dem Meeresspiegel und Hohegebirgsklima /Höhe
über dem Meeresspiegel und Hochgebirgsklima /Höhe über
400 Meter/.

In der polnischen Kurorthherapie wird der Grundsatz einer
komplexen viel — verschiedenleistungsfähiger Behandlung
beachtet nach einem individuell für jeden Kranken bear-
beiteten Plan. Dabei wird eine entsprechende Reihenfolge
genau dosierter kinesitherapeutischer und balneothe-
apeutischer Elemente berücksichtigt oder anderer physiother-
apeutischer Behandlungen, bei gleichzeitiger Nutzung klima-
tischer, landschaftlicher und kultureller Faktoren. Verschie-
dene physiotherapeutische Elemente die sich gegenseitig Ergänzen und Durchführung einer geplanten gesundheitlichen Erziehung, die lehrt wie man mit der Krankheit leben soll und ihrer Folgen entgegenwirken bewirkt dass Balneo-rehabilitation besonders Bewegungs-Organe grosse Überlegenheit über die Rehabilitation im Wohntort der Kranken hat.

Spezifisch für die polnische Kurorttherapie ist die Subterraneanetherapie das ist Behandlung im Mikroklima der ausgebauten Kammern des Salzbergwerkes in Wieliczka und im Mikroklima ähnlicher Kammer des Uranbergwerks in Kowary.

Grundsätze der Spezialisierung und Schulung der in Kurorten tätigen Ärzte

Organisation wissenschaftlicher Forschungen auf dem Gebiet der Kurorttherapie und physikalischer Medizin in Polen

trum arbeitenden Wissenschaftler mit der Kurortbehandlung und Physiotherapie vertraut.

Wissenschaftliche Forschungen die in den letzten Jahren in Polen auf dem Gebiet der Kurortbehandlung und physikalischer Medizin durchgeführt worden sind

Kurz zusammenfassend die in den letzten Jahren im Institut ausgeführten Arbeiten, muss festgestellt werden dass die Ergebnisse einer Reihe balneotherapeutischer und farmakodynamischer Untersuchungen von Heilwässern und Moorien auf die Bearbeitung von Methoden ihrer Anwendung erlaubten und die Kenntnis ihres physiologischen Wirkungsmechanismus infolgedessen auf die genaue Bestim- mung der Indikationen zu ihrer Anwendung. Qualitative Normen für abgefüllte Heilwässer wurden bearbeitet sowie für kontaminierte Heilsole derartige technologische Voraus- setzungen für die Herstellung von Heilsoletabletten aus Heilwässern, von Moorpaste und verschiedener Heilsole mit fitotherapeutischen Komponenten.

In anderen experimentellen Untersuchungen zeigte man dass der Aufenthalt in einer Luft mit grosser Konzentration negativer Ionen günstigere Änderungen einiger physiologischer Prozesse bewirkt als die positiven Ionen.

In den kurortlichen wissenschaftlichen Forschungszentren werden allgemein klinische Untersuchungen geführt. Eine
Reihe von Forschungen kardiologischer Zentren bestätigte die Effektivität der Kurortrehabilitation nach einem Herzinfarkt.

Zum Beispiel erhielt man Besserung bei 90,3% von etwa 4 000 Kranken mit frischem Herzinfarkt. Ebenfalls stellte man fest, dass in einer Gruppe von Kranken mit Herzinfarkt die nach der Behandlung im Krankenhaus einer Kurortbehandlung unterzogen war 72,5% der Arbeit wieder aufgenommen hat, dagegen waren es in der dem Krankenhaus behandelten Gruppe 56,6%. Gute Ergebnisse erhält man auch in der Kurortbehandlung der Koronarkrankheit ohne Infarkt. In primärer arterieller Hypertension wurde eine Besserung bei 87% festgestellt, dieser Kranken die im Kurort behandelt wurden, war die Besserung bei 50% 3-6 Monate dauerte, und bei 15% sogar länger. Es wurde festgestellt, dass eine Kurortbehandlung Erwachsener im See Klima eine subjektive Besserung bei 91,7% von Kranken mit exogenem Bronchialasthma bewirkt und nur bei 6,8% der Fälle mit endogenem Bronchialasthma. Gute Behandlungsergebnisse beider Gestalten dieser Krankheit erhielt man auch nach einer Subferranetherapie im Mikroklima der ausgebeuteten Kammern des Salzbergwerkes in Wieliczka. Man erhielt gute Ergebnisse in der Behandlung arterieller Hypertension und der Koronarkrankheit mit Radoninhalationem in den Kamern des Uranbergwerkes in Kowary.

Jedoch bereits das, was ich in grosser Abkürzung vorstellt zeugt davon, dass die Kurortbehandlung in Polen eine anerkannte klinische Disziplin ist, die sich stets weiterentwickelt. Die originelle Organisation wissenschaftlicher Forschungen auf dem Gebiet der Kurortbehandlung bewirkt aber, dass Klinizisten aus allen polnischen medizinischen Hochschulen an ihnen teilnehmen und zu einer vollständigen Integration der Kurortbehandlungen mit anderen medizinischen Fachgebieten beitragen.

Die vergangenen 40 Jahre haben gänzlich die Zielmässigkeit der völligen Einschliessung der Kurorttherapie in das System des allgemeinen Gesundheitsschutzes bestätigt und die Kurergebnisse begründeten ihre hohe Stellung in den Klinischen Disziplinen.
American healing waters: a cultural study of balneology in American health care and medicine
The American Health Resort Spa and Organized Medicine 1925-1941

J.P. DE VIEVILLE *
(San Antonio, Texas, USA)

It helps to begin with another man’s conclusions. For the student of medical history, culture and civilization an important conclusion was made by Sigfried Giedion, author of Mechanization Takes Command: A Contribution to Anonymous History. This major work of cultural analysis is “a study of the evolution of mechanization in the last century and a half, its effects on modern civilization, and its historical and philosophical implications”. Giedion’s conclusions chronicle and interpret vital information and insight for an analysis, interpretation, and understanding of our American cultures and civilization.

In his last chapter Giedion describes and illustrates “The mechanization of the Bath” by reviewing six historical periods entitled:

- Types of Regeneration.
- The Steam Bath as a Social Institution.
- The Decay of Regeneration.
- The Bath in the Nineteenth Century.
- The Bathroom Becomes Mechanized and.
- Regeneration a Gauge of Culture.

Through antiquity, the middle ages, the enlightenment, and into the modern era of mechanization, Giedion traces the different historical civilizations and cultural eras of baths and bathing as a means and method of regeneration.

When used within the context of baths and bathing, two types of regeneration must be distinguished. The first type of regeneration is the practice of the individual bath as ablation. This is a private matter of an individual ritual. This form of regeneration as ablation is a washing and cleansing of the body and it frequently has a religious connotation. A second type of regeneration in the practice of baths and bathing is a total - wholistic regeneration. This form of regeneration is less of an individual practice, rather total - wholistic regeneration involves a social event, group activity, community expression, and most importantly, total - wholistic regeneration is a cultural pattern of baths and bathing. This is the European practice of “Die Kur” or “La cure thermale”.

Both types: the ablation bath and the total - wholistic regeneration bath are often found together, one usually dominating the other. Closely connected with the type of bath is its social significance. The ablation bath, by its very type, easily leads to the position that bathing is a private matter. In this view the tub and shower bath, especially in its present-day mechanized and standard form, is the chief exponent. The total - wholistic regeneration bath, by its very type, favors social relations, interchange, and transactions and almost automatically becomes a focus of community life.

Different cultural eras have developed these two types of baths and bathing with different emphasis. The Greeks practiced the total - wholistic regeneration through the invigoration of the body and the mind. The Romans moved the practice of baths and bathing to a more technical and practical refinement of the hot-air thermae with its accessories. In the Islamic type of bath, the self-invigoration of games and athletics were replaced by the penetrating effects of various massages and joint cracking. Both Roman and Islamic baths required a plentiful labor supply of attendants. The original Russian bath was the simplest of regeneration baths and perhaps the most natural. It required no massive building, no technical apparatus, and no slaves. “The whole pattern suggests an origin in remote times, now lost in historical darkness. The austerity of the Russian bath corresponds to a humble standard of living. It is at the same time the most democratic and the most long-lived type of regeneration”.

In late Gothic times the bath ceased to be a social institution. During the nineteenth century technical applications for human requirements were developed. In our own twentieth century the full mechanization created the standard bath and toilet-cell with its complex plumbing, enameled tub, chromium taps, and, underwater massage jets. This bath and toilet cell were then connected to the bedroom.

The conclusion that Giedion draws from his cultural analysis of the “Mechanization of the Bath” is that: production and convenience of mechanization are no substitute for the social type of total - wholistic regeneration. Mechanization has provided convenience for baths and bathing. But in so doing, baths and bathing as a cultural institution and a social type of regeneration for

* The Hot Wells Foundation, 1923 West French Place San Antonio, Texas, 78201 USA.

total - wholistic regeneration, have become replaced and lost to the demands of convenience and supply of production. The mechanization of the bath has provided the convenience for the individual and private bath of ablation, but in so doing this same mechanization has superseded and removed the social type of total - wholistic regeneration as a cultural institution.

And even now, our American culture has moved rapidly, through this mechanical period and entered into a technological space age era of micro-electronics. This is a cultural movement beyond the mechanization of the bath which raises some interesting questions: What will this mean in terms of the bath and bathing practices for the future? What will the mechanical, technical, and electrical core of the 21st century bathroom look like? What plans are there for the plumbing of the future? Might there be a return to the social total - wholistic regeneration type of bathing?

Unfortunately most of the American organized medical and scientific communities have forgotten the fountains of nature and the rhythms of climate. The American natural resort health spas are usually wrapped in a shroud of folklore, skepticism, and distrust of merit. There is an assumed lack of medical evidence and double blind proofs of scientific and clinical efficacy.

In our present mechanical and technical cultural period, which has allowed itself to become dominated by production and convenience, little or no Time is found nor Rhythms allowed for the social institutions of baths and bathing which promote a total - wholistic regeneration. When dominated by production and convenience both the individual and social group loses touch with the fundamental and archetypal elements of Time and Place. To lose touch with Time and a sense of Place is to lose a sense of Rhythm. To lose a sense of Rhythm is to lose touch with Nature. And to loose touch with Nature is to lose the ability for the regeneration of Life.

Obviously I am begging a question of grave concern for the future of American culture. Water is the Blood of Nature. How American culture treats its natural and mineral waters will symbolically reflect and determine the ability of our cultural and social regeneration. As a cultural symbol for the types of regeneration, the practices of the bath and bathing reflect the ability of a culture to regenerate. The ability for successful cultural regeneration and the social practices of the bath and bathing for total - wholistic regeneration are immersed in the same process and solution.

So what does all this have to do with Medical Hydrology and American Medicine Back in 1940, Oskar Baudisch Ph.D., the Research Director of the Saratoga Spa, in his "Magic and Science of Natural Healing Waters" stated it very clearly:

« America possesses a rich treasure in its mineral springs, and it is possible to put this wealth to use. The great majority of people still need to have this fact brought home to them in some emphatic manner. Spas and watering places are important for the health and well-being of mankind. Mineral springs are a national asset, and any nation which fails to make wise use of these gifts of nature causes loss and damage to the economic strength of its people. »

When confronted with the critical issues of cultural regeneration and the vital role of social baths and bathing for total - wholistic regeneration as practiced at the traditionally natural resort health spa, we are forced into a cultural analysis and artifact search. We need to look back into previous eras and examine natural therapeutic spaces and places.

Slide presentation

A visual review a few historical American natural health resort spas. Here are several of the traditional American places where time was permitted for social bathing of total - wholistic regeneration.

In New England:
- Stafford Springs;
- Saratoga Springs;
- Sharon Springs.

In the Virginias:
- Berkeley Springs;
- Warm Springs;
- The Homestead.

In Arkansas:
- The Hot Springs National Park.

In Texas:
- Sisterdale;
- Mineral Wells;
- Hot Wells.

These are a few natural places of American healing waters. They represent several different types of mineral waters and climates.

SUMMARY

Regeneration as a gauge of culture is reflected in the ways, means, and practices of the social and therapeutic bathing and the use of the waters. AMERICAN HEALING WATERS is a survey and re-examination of representative individual perceptions, social values, and cultural attitudes of Native Americans, Europeans, and Euro Americans towards these therapeutic and social uses of the waters of America from pre-columbian times to the present era.

Combining an inter-disciplinary method with materials from the humanities and social, natural, medical, and health care sciences, the dissertation focuses on the healthful as well as not so healthful uses, abuses, perceptions and therapeutic attitudes of the waters in American Civilization. Through historical research, cultural analysis, and imaginative interpretation of social history, psychology, popular culture, literature, medicine, architecture, art, and myth, the civil imagery of American Healing Waters is reflected.

A series of deeps wells are drilled along the American cultural time line. This series of specific posted water holes ranges from the ancient, native, colonial, national, and natural water cures and practices of previous eras to the more recent progressive, scientific, medical, biotechnical and anamorphic research and developments of H2O. These test wells serve as standard measurements, biographical bottles, and caldremas of containment for the boundless springs and streams of imaginal reflections in the American Healing Waters.
Klimatherapie, Talassotherapie, Balneotherapie, Peloidotherapie
und ihre anwendungs möglichkeiten in der Türkei

Nurten USMAN-ÖZER *, u.KOLL **
(Istanbul, Türkei)

Ich möchte eine kurze Information über die Klimatherapie, die Talassotherapie, die Balneotherapie, die Peloidotherapie und ihre Anwendungs Möglichkeiten in der Türkei geben:

Laut den Daten der an dieser Küsten gemacht meteorologischen Messungen sind die Eigenschaften dieser Gebiete wie folgt.

Von der Dauer und der Intensität des Sonnenscheins her, ahnlich auch die agiischen Küsten denen des Mittelmeeres.

* Direktor von Lehrstuhl für medizinische Ökologie und Hydroklimatologie Medizinische Fakultät ISTANBUL.

Thalassotherapie und Klimatherapie (Mittelmeer Gebiet)

Abb. 1. — Antalya: Kindir.

Abb. 2. — Antalya: Sarik-Belek.

Die zu 70 % unbewölkter verlanfender Tage und die um 2-3°C kühle Meerestemperatur bieten passende Bedingungen für die Talassotherapie. Die Durchschnittstemperatur beträgt in der Sommermonaten 23-28°C. Die Stande in diesem Gebiet, die in unserem Land für Freizeitzwecke genutzt werden, würden durch ihre natürlichen.
Thalassotherapie und Baineotherapie (Ägäischer Meer Gebiet)

Abb. 5. — Izmir : Çesme.

Abb. 6. — Izmir : Silne.

Beschaffenheiten und ihr Aussehen anziehend (Marmaris — die Fahrt ins Blaue). In dieser Gegend sind archäologische und historische Reliktes und das Taucherwesen von Bedeutung. Es wird sowohl zu wissenschaftlichen Untersuchungszwecken als auch zu Handelszweckes (Schwammfischerei) getaucht. Aus diesem Grund ist an der agäischen Küste insbesondere in Bodrum die Unterwasser-Medizin von größerer Wichtigkeit als die Anwendung der Talassotherapie zu gesundheitlichen Zwecken.

Obwohl sich die Marmarameerküsten und die westlichen Schwarze Meer-Küsten in demselben Mittelmeerklima, Gebiet befinden, weisen sie örtliche Unterschiede auf: die Wintertemperaturen fallen, je weiter nördlich man sich begibt, und die Trockenheit nimmt ab. Es wird kühler und regenreicher.

Am Marmarameer variiert die Meerestemperatur in den Sommermonaten zwischen 20-24°C. Während im Süden dieses Gebietes die Tage zu 65 % unbewölkt verlaufen, beträgt dies Prozentsatz im Norden 25 %. Die Durchs-
Balneotherapie (Mittel Anadolien Gebiet)

Abb. 8 - 9. — Sivas : Balıklı Çermik.

(Agäischer Meer Gebiet)

Abb. 10. — İzmir : Balıçova-Agamemnon.

...chnittstemperatur beträgt in der Sommermonate 20-26°C. Im Osten des Schwarzen Meer Gebietes jedoch verlaufen die Sommermonate verhältnismässig lau. Demhingegen sind die Wintermonate noch kalter. Die wichtigste Eigenschaft stellt der zu jeder Jahreszeit reichliche Regen und die Luftfeuchtigkeit dar. Parallel hierzu ist die Meeresstemperatur ziemlich tief. Der Sonnenschein pro Tag beträgt zwischen 5-11 Stunden und die Sonnenenergie beträgt 350-400 cal/ cm² pro Tag. Die Durchschnittstemperatur im Sommer variiert zwischen 20-23°C.

Allerdings sind die Strände, die zwischen den entlang der Schwarzen Meer Küste verlaufenden Bergen gelegen sind nicht so weit und häufig wie an der Wellergang, oft verursacht es sogar Lebensgefahr.

Die Klimakuren in der Türkei sind jedoch nicht mehr als ein paar Sanatorien die das mittelhohe Bergklima ausnutzen. Das Tuberkulose Sanatorium auf den Prinzeinseln in Istanbul, das Sanatorium am Fusse des Yakacık

Abb. 11 - 12. — Denizli : Pamukkale.

Presse thermales et climatiques, 1988, 125, no 5.
Tabelle I. — Warme und heisse Mineralquellen (analysiert vom Lehrstuhl).

<table>
<thead>
<tr>
<th>Quellenarten</th>
<th>Insgesamt</th>
<th>Analyse vorliegt</th>
</tr>
</thead>
<tbody>
<tr>
<td>Marmaragebiet</td>
<td>62</td>
<td></td>
</tr>
<tr>
<td>Agäisgebiet</td>
<td>117</td>
<td></td>
</tr>
<tr>
<td>Mittelanatolien</td>
<td>74</td>
<td></td>
</tr>
<tr>
<td>Mittelmeergebiet</td>
<td>9</td>
<td></td>
</tr>
<tr>
<td>Schwarzmeegebiet</td>
<td>11</td>
<td></td>
</tr>
<tr>
<td>Ost- und Südostanatolien</td>
<td>30</td>
<td></td>
</tr>
</tbody>
</table>

Bei der Mehrzahl der analysierten Quellen handelt es sich um gashaltige, hyperthermale Quellen aus Tiefengesteinen mit Meschcharakter.

Tabelle II. — Art der Mineralwasserquellen in der Türkei.

<table>
<thead>
<tr>
<th>Art der Quelle</th>
<th>Anzahl</th>
<th>%-Anteil</th>
</tr>
</thead>
<tbody>
<tr>
<td>Bikarbonatisch ± CO₂</td>
<td>39</td>
<td>25</td>
</tr>
<tr>
<td>Bikarbonatisch</td>
<td>32</td>
<td>20,5</td>
</tr>
<tr>
<td>Bikarbonatisch ± sulfatisch</td>
<td>30</td>
<td>19,2</td>
</tr>
<tr>
<td>Bikarbonatisch ± salzhaltig</td>
<td>18</td>
<td>11,5</td>
</tr>
<tr>
<td>Salzhaltig</td>
<td>12</td>
<td>7,7</td>
</tr>
<tr>
<td>Sulfatisch</td>
<td>9</td>
<td>5,8</td>
</tr>
<tr>
<td>Salzhaltig ± sulfatisch</td>
<td>7</td>
<td>4,5</td>
</tr>
<tr>
<td>Salz ± SO₄ ± HCO₃ ± CO₂</td>
<td>5</td>
<td>3,2</td>
</tr>
<tr>
<td>Kohlendioxidhaltig</td>
<td>2</td>
<td>1,3</td>
</tr>
<tr>
<td>Salz ± CO₂</td>
<td>2</td>
<td>1,3</td>
</tr>
<tr>
<td>Insgesamt</td>
<td>156</td>
<td>100</td>
</tr>
</tbody>
</table>

Außerdem enthalten 21 dieser Quellen Schwefel (13,5 %), sowie 10 (6,3 %) das Gas Radon.

Berges (250-300 m) in Istanbul, das sich in 800 m Höhe befindende Kirazli Yayla Sanatorium in Bursa-Uludag und das Orthopadie Sanatorium am Ufer des Egridir Sees in Mittelkotanen stellen solche Kureinheiten dar.

Möglichkeiten für die Speleotherapie, die in der Klimatherapie als eine Art der natürlichen inhalierungscur gewertet werden kann, gibt es in den über 6000 Höhlen, die sich in der Türkei breit verteilt befinden.

Allerdings ist dieses Thema noch nicht genügend behandelt worden. Nur die Alanya-Tropfsteinhöhle (mit CO₂) wird routinemäßig zur Behandlung der Asthma Patienten benutzt.

Résumé

Cette branche de la médecine moderne est une unité de l'étude de l'écosystème concernant la répartition des êtres vivants à la surface d'environnement, l'action entre

Presses thermale et climatique, 1988, 125, n° 5.
l'homme et le milieu naturel et la mise en évidence des causes qui régissent cette répartition.

Dans cette optique cette science consiste à utiliser les influences de l'énergie d'origine naturelle qu'exercent sur l'état de santé certaines lois fondamentales de la distribution des organismes.

La Turquie offre 8 400 km de côtes, 70 p. cent de jours d'ensoleillement dans l'année, une altitude entre 0° — à 5 000 m.

Les longues forêts, et les lacs avec les mers, lac forêt et le climat en font un bon terrain de soins : plus de 6 000 grottes, à peu près 2 000 différents types des boues et d'eau minérale chaude, offrent un éventail de toutes les possibilités de la Balnéothérapie.

REFERENCES
Session 6

Expérimentation en médecine thermale

Les difficultés de l’expérimentation clinique en thérapeutique thermale

G. AUPY, J. CANELLAS, J. PACCALIN
(Bordeaux)

Le texte de cette communication a été publié dans le n° 3-1988, pages 127-129, de notre revue.

L’influence de la crénothérapie à Balaruc sur l’axe hypophyso-surrénalien

R. AYATS *, A. ORSETTI **, J.L. JACQUEMIN ***
(Balaruc-les-Bains, Montpellier)

La littérature a déjà parlé de l’influence hormonale à l’occasion des cures thermales. Les réactions cliniques observées en cours de crénothérapie nous ont fait penser à des signes cliniques proches de ceux retrouvés dans certaines pathologies de l’axe hypophyso-surrénalien.

Tous ces éléments nous ont incité à explorer cet axe pendant la crénothérapie à Balaruc-les-Bains.

*Médecin thermal, Balaruc-les-Bains.
** Professeur, Faculté de Médecine, Montpellier-Physiologie 2.
*** Chef du Laboratoire d’Exploration Fonctionnelle des Hormones, Hôpital La Peyronie, 34000 MONTPELLIER.

MÉTHODOLOGIE

Deux échantillons homogènes de personnes, autant d’hommes que de femmes présentant une pathologie articulaire dégénérative avec un syndrome douloureux polyarticulaire, ont été étudiés : 51 sujets ayant déjà effectué une cure sont soumis tous les jours, dimanches non compris, pendant 21 jours à une application globale de boue à 42°C pendant 20 minutes suivie d’une douche au jet puissant à 2 kgf/cm² et 38°C et de massages sous eau à 38°C pendant 10 minutes.

10 témoins vivant dans le même milieu mais non soumis au traitement sont également étudiés.

Presse thermale et climatique, 1988, 125, no 5.
PROTOCOLE ET MOYENS

Le traitement thermal a lieu tous les jours à 9 h. Les prélèvements sanguins ont lieu en J1-J10-J19 soit les premier, 10e et 19e jours du traitement thermal et à 7 h, 11 h et 18 h.

Le dosage de l’ACTH et du cortisol a été effectué par la méthode radio-immunoologique (References ACTH : BERSON S.A. YALOW R.S. RADIO-IMMUNOASSAY OF ACTH IN PLASMA.

J. OF CLIN. INVEST. 1968, 47, 2725.

Nous avons également dosé le sodium et le potassium à 7 h en J1-J10 et J19, ce dosage a été réalisé par photométrie de flamme classique.

Au total, cela représente 549 prélèvements soit 549 dosages ACTH et 549 dosages cortisol avec 3 passages, soit au total 1 647 dosages par hormone.

Une enquête nous a permis, grâce à l’interrogatoire et à l’observation d’enregistrer les signes cliniques en cours de déroulement du traitement. Une autre enquête basée sur un interrogatoire par courrier nous a permis d’analyser les résultats sur l’amélioration du syndrome douloureux en qualité et en durée, selon la loi classique de Cuvelier.

Des sous-groupes ont été constitués selon l’amélioration des douleurs articulaires. Le sous-groupe des non-améliorés a obtenu une amélioration toujours inférieure à 2 mois, le sous-groupe des améliorés toujours supérieure à 6 mois. Les résultats ont été analysés par les moyens informatiques et l’étude statistique à l’aide des tests non paramétriques de Mann Whitney.

Les moyens financiers ont été en totalité pris en charge par Monsieur Pepi alors directeur des thermes municipaux de Balaruc-les-Bains.

RÉSULTATS

La figure 1 représente les valeurs de l’ACTH et du cortisol à 7 h, 11 h et 18 h aux 1er, 10e et 19e jours de la cure. Ce schéma permet de constater le mouvement nycthéméral classique de l’ACTH et du cortisol avec le pic de 7 h et la décroissance rapide de 7 h à 11 h. En J1, J10 et J19 les courbes du cortisol restent groupées sans variation au cours des 21 jours, par contre, il existe chez les sujets traités par rapport aux témoins, une baisse du cortisol de façon significative et une tendance à l’élévation de l’ACTH.

La figure 2 représente par une courbe moyenne les varia-
EXPÉRIMENTATION EN MÉDECINE THERMALE

ACTH : moyennes des 12 sujets à soulagement nul ou très faible par rapport aux 39 sujets à soulagement fort et par rapport à la moyenne des sujets contrôles.

- Soulagement nul ou très faible : 80,69 60,36 43,39
- Soulagement fort : 49,30 31,79 28,10

Cortisol : moyennes des 12 sujets à soulagement nul ou très faible par rapport aux 39 sujets à soulagement fort et par rapport à la moyenne des sujets contrôles.

- Soulagement nul ou très faible : 21,70 12,37 6,73
- Soulagement fort : 21,13 10,37 6,47

Fig. 2.

...tions de l’ACTH et du cortisol à 7 h, 11 h, et 18 h dans les sous-groupes améliorés et non-améliorés, sans différence significative entre les deux, mais toujours au-dessous des témoins pour le cortisol, par contre l’ACTH augmente de façon significative dans le sous-groupe des non-améliorés alors que le sous-groupe des améliorés situe son ACTH au niveau des témoins.

Enfin il existe une stabilité du sodium et du potassium quel que soit le groupe ou le sous-groupe étudié, parmi les sujets traités et parmi les témoins.

Dans notre travail, comme nous le permet de l’observer la figure 1, le mouvement nycthéméral classique témoigne des bonnes conditions de l’étude. D’autre part il semble faire apparaître une élévation de la consommation périphérique du cortisol cortisolémie abaissée) ce qui devrait logiquement déreinir la sécrétion hypophysaire en ACTH. Cette hyperconsommation périphérique du cortisol peut faire envisager des phénomènes réactionnels au niveau hypophysaire comme cela se produit normalement en physiologie dans les états de relance hormonale. Cet état devrait permettre de concevoir un relatif corticisme endogène réactionnel qui suivra la crénothérapie. Bien entendu, pour conforter cette proposition, il est important de pouvoir poursuivre les travaux par la surveillance biologique des curistes dans les mois qui suivent le séjour en cure.

Il est intéressant de noter que la baisse de la cortisolémie chez les sujets testés par rapport aux témoins se retrouve déjà dès le 1er jour avant tout traitement, ceci nous fait prendre en compte le stress créé par le voyage et l’adaptation au nouveau milieu. Stress dont le relai est pris par celui représenté par la thérapeutique thermale elle-même.

Sur notre figure 2, on observe que les sujets améliorés ont une ACTH au niveau des témoins, ce qui témoigne d’un bon fonctionnement de l’axe hypophysaire-surrénalien. Les sujets non-améliorés doivent augmenter leur ACTH afin de maintenir leur cortisol normal, ce qui nous fait penser à une relative faiblesse de leur axe hypophysaire-surrénalien.

Chez les 39 sujets améliorés un rebond de l’axe hypophysaire-surrénalien peut être imaginé après la cure, rebond de l’axe qui serait propre à réaliser une élévation de la cortisolémie.

CONCLUSION

Sur ces premiers travaux il semble se dégager la notion de 2 groupes de sujets aux résultats différents selon qu’ils sont améliorés ou non-améliorés. Les sujets améliorés semblent présenter un axe dont le fonctionnement est comparable à celui des témoins non traités et fonctionnellement dynamique.

REFERENCES

Presse thermale et climatique, 1988, 125, n° 5.
Chronobiologie und Balneotherapie

R. GÖNTHER, M. HEROLD *
(Innsbruck, Österreich)

Nach klinischen und experimentellen Erfahrungen besitzen Lebewesen nicht nur eine morphologische, sondern auch eine Zeitstruktur. Sie verfügen über ein angeborenes, genetisch vorprogrammiertes und im Rahmen der Evolution warshcheinlich notwendiges multioszillatorisches Funktionsystem, das sich auf verschiedenen biologischen Stufen feststellen läßt, von subzellulären Strukturen angefangen bis zu sozio-ökonomischen Bezugssystem [2, 12, 26].

Diese endogenen, genetisch determinierten Zeitsysteme ("innere Uhr") sind durch Rhythmen gekennzeichnet, die einen breiten Frequenzbereich von bis zu 2000 Zyklen pro Sekunde bis zu 1 Zyklos pro Jahr und noch niedrigeren Frequenzen umspannen.

Wenn sie auch in ihrer Entstehung und in ihrer Persistenz unabhängig von Umweltfluss zu sein scheinen, so ist doch eines ihrer wichtigsten Charakteristika ihre Fähigkeit, sich periodisch gewandelten Umweltflüssen anzupassen. So dem Tag- und Nacht-Wechsel, Zeiten der Nahrungsaufnahme, Temperatur Schwankungen, Lärm und Stille, Aktivität und Ruhe und den vielfältigen sozialen, zeitlich vorgegebenen Einfüssen. Diese Umweltflüsse, von Halberg "Synchronisatoren", von Aschoff "Zeitgeber" genannt [1, 14], können endogene Rhythmen mit Umweltflüssen synchronisieren, was sich am eindrucksvollsten und am besten anhand der synchronisation des endogenen Circadianrhythmus mit dem exakten 24-Stunden-Rhythmus nachweisen läßt.

So gelingt es dem Organismus, sich rasch und adäquat an periodische Umweltveränderungen anzupassen und dadurch zu garantieren, daß der Stoffwechsel jeweils das richtige Material in der richtigen Menge zur richtigen Zeit an die richtigen Ort des Verbrauches geliefert werden kann. Mit der Erforschung dieser Phänomene befördert sich die Chronobiologie [2, 12, 13, 14, 22, 26].

Wir konnten nachweisen, daß auch regelmäßige physiotherapeutische Anwendungen, wie etwa regelmäßige Bäderarbeiten im Rahmen von Kurverfahren, Synchronisatorwirkung nicht nur hinsichtlich circadianer, sondern auch circaseptaner Rhythmen haben [7, 8, 11, 21].

Ferner fanden wir, daß chronisch Rheumakranke Dyschonien in ihrer Zeitstruktur aufweisen und ebenso ältere Menschen, sodaß sie nicht in der Lage sind, sich wie jugendliche Versuchsleute, an nosographische Umweltflüsse anpassen zu oder gelegentlich synchronisierte Umweltflüsse optimale zu adaptieren [5, 6, 7, 8, 9, 10, 11, 18, 21, 23].

Dafür sei als Beispiel die Rhythmik des Adrenalinzyclus angeführt, wo normalerweise die Cortisolproduktion in der Neblenniererinde in den frühen Morgenstunden ihren Gipfel erreicht, um das Hormon für die Tagesaktivitäten zur Verfü hung zu stellen. Chronisch Kranke sind dazu oft nicht mehr in der Lage und verlieren oder verschweigen ihre Cortisolssekretion in andere Tageszeiten. Auch die dem Tagesrhythmus angepaßte exogene Cortis onoidbehandlung muß dann anders zeitlich strukturiert verordnet werden [3, 4, 6, 8, 9, 10, 15, 16, 17, 18, 19, 20].

Daraus ergibt sich, daß nicht nur physikalisch-therapeutische Streßflüsse, sondern auch Medikamentengaben die zeitliche Strukturierung eines Organismus, seine Euchronie oder Dyschronie, berücksichtigen müssen [25].

* Ordinariat für Physikalische Medizin an der Medizinischen Fakultät der Universität Innsbruck und Ludwig-Boltzmann-Institut für angewandte Bäder- und Klimakurkunde Gastein A-6020, Anichstraße 35, INNSBRUCK (Österreich).

Presse thermale et climatique, 1986, 125, n° 5.
EXPERIMENTATION EN MEDECINE THERMALE

Da chronobiologische Untersuchungen vor allem an gesunden jugendlichen Versuchspersonen durchgeführt wurden, sahen wir unsere Aufgabe darin, in Langzeitbeobachtungen an chronisch kranken und älteren Menschen abzuklären, inwieweit Störungen biologischer Rhythmen symptomatischen Krankheitswert haben könnten und inwiefern nicht-medikamentöse und medikamentöse Zeitgeber die gestörte Zeitstruktur wiederherstellen könnten, die Dyschronie also wiederum in eine Euchronie rückzuverwandeln imstande sind.

METHODIK

Einzelheiten zur Methodik wurden mehrfach mitgeteilt [7, 8, 11, 13, 18, 23, 24].

ERGEBNISSE

Aber nicht nur Arthritispatienten, sondern auch Arthrosepatienten, oft ältere Menschen, zeigten Dyschronien, die sich ebenfalls in der Tages- und Nachtzeit im Kurverlauf dargestellt. Der Höchstwert der Ausscheidung, in seiner zeitlichen Phasenbeziehung zum Phasenreferenzpunkt lokale Mitternacht als Acrophase, Gipfelphase, bezeichnet, liegt schon zu Kuran-

Abb. 2. — Kurvenverläufe von täglichen Messungen der 17-OHCS-Ausscheidung im portionierten 24-Stunden-Harn über 24 Tage von Arthrosepatienten ohne Bäder in Gastein. Beachte die plötzlichen Phasensprüge bei den Patienten 4-7, wobei es zu Verlagerungen der 17-OHCS-Acrophase im 24-Stunden-Tag um 360° kommen kann, das heißt, daß es zu beträchtlichen Verzögerungen des 24-Stunden-Zyklus gegen 23 Stunden oder weniger kommen kann, andererseits aber wieder zu Verzögerungen, wie bei Patienten 5 oder 6 angedeutet. Vor allem bei Patient 6 fallen heftige Schwankungen im späteren Verlauf auf. Das bedeutet, daß auch die Cortisolacrophase bei Arthrosepatienten sich nicht regelmäßig gegen 06.00 Uhr halten dürfte, sondern daß es auch hier zur Verlagerung der Acrophasenlage kommen kann. Das ist insoweit bedeutsam, als dann Bäderanwendungen den Adrenalinzyklus zu einer ungünstigen Zeit treffen können, wo die körpereigene Cortisolproduktion möglicherweise gar nicht ihre optimale Acrophasenlage hat.

fong keine sehr große Einheitlichkeit erkennen. Sie lag bei einzelnen Patienten nicht wie erwartet gegen 8 bis 9 Uhr früh sondern auch zu verschiedenen anderen Tageszeiten. Arthrosekranke ohne Bäder zeigten darüber hinaus im Kurverlauf sprunghafte Abweichungen, die oft unerwartet und plötzlich aufraten und auf größere Zeitsverschiebungen im Adrenalinzyklus hinwiesen. Glatte Kurvenverläufe während der Kur zeigten dagegen Arthrosepatienten mit Bäder, bei denen anscheinend der Synchronisatoreinfluß der Bäder in der Lage war, größere Zeitsprünge in der 17-Hydroxycorticoid-Ausscheidung im 24-Stunden-Tagesverlauf zu verhindern. Am stabilsten verhielt sich die 17-OHCS-Ausschei-
Abb. 4. — Stable Circadian Acrophase of Urinary 17-Hydroxycorticosteroid Excretion in 19 Healthy Young Men before, during and after Daily Radioactive Balneotherapy.*

* 19 medical students provided 4 urine samples daily (collected between 07h-07h30, 07h30-12h, 12h-15h and 15h-22h) for 75 days while living at health spa (Badgastein, Austria). During parts of this span they had daily radioactive baths, as indicated on the graphs. Note cross-over design for subjects 1-5 (above) and 6-10 (below) toward end of study. After computing excretion rates in mg/l, 24 h cosine was fit to successive 10-day spans of data displaced by 12 h, until end of study. Acrophase indicates timing of highest excretion rate, based on cosine approximation of rhythm.

Die Bedeutung des Adrenalsystems für die zeitstrukturierte Adaptation an Balneotherapie, die in der balneologischen Literatur stets betont wurde, läßt sich auch mit Hilfe der ACTH-Behandlung wiederum nachweisen.

Daraus ergibt sich, daß Funktionen, die durch die Bäder alleine nicht euthoronisiert werden können, durch ACTH-Injektionen zu Kurbeginn von Dyschronie in Euchronie, zumindest was den Circadianrhythmus anbelangt, überführt werden können. Wie Abbildung 8 darstellt, liegt die Handkraft bei Arthritis- und Arthrosekranken ebenso wie auch bei Normalpersonen mit ihrer Acrophase bei 16 Uhr nachmittags. Dort wären also auch die Trainingszeiten für die Handkraft günstig. Arthritiskranke zeigen verständlicherweise einen niedrigeren Handkraft-Mesor (Mittelwert) unter Berücksichtigung der Tagesrhythmik als Arthrose- kranye, doch nimmt die Amplitude ihrer Handkraft im Kurverlauf um etwa 9 % zu, das heißt sie steigt sich, während die Handkraft Arthrosekranker, die an sich höher ist, um 9 % abnimmt. Dennoch scheinen Bäderinflüsse neben ihrer synchronisierenden Zeitgeberwirkung auf die Handkraft Arthrosekranker eher negative Auswirkungen zu haben als auf die Arthritiskranke. Möglicherweise machen sich hier Ermüdungerscheinungen bei älteren Menschen bemerkbar, andererseits ist bei höheren Handkraft-Ausgangswerten eine nur geringgradige Steigerung oder gar eine Abnahme wahrscheinlicher und ebenso eine Zunahme bei den relativ niedrigen Ausgangswerten der Arthritiskranken.

Abbildung 9 zeigt, daß auch hier ACTH-Injektionen positive Effekte haben, indem die Handkraft bei Arthritispatienten nach ACTH-Injektionen an den ersten drei Kurtagen während der ganzen Kur signifikant höher liegt als in
Abb. 7. — Population mean cosinor.
GRIFFSTÄRKEN (HANDBRAFT)-RHYTHMOMETRIE BEI ARTHRITIS- UND ARTHROSEPATIENTEN

Abb. 9. — Handkraft, gemessen mit Hilfe einer zweimal gefalteten Blutdrucksanschlinge vor, während und nach ACTH- oder Placebogabe zu Beginn einer dreiwöchigen Badekur in Badgastein (Mesor mit Standardfehler durch Population-Mean-Cosinor-Berechnung ermittelt). Die schraffierte Säule zeigt jene 3 Tage zu kurzbeginn, an denen jeweils um 06.00 Uhr ACTH oder Placebo i.m. verabreicht wurde.

Die Population-Mean-Cosinor Berechnung ergibt einen signifikanten «Jahresrhythmus» (Mesor = 4,88; Amplitude = 0,30; Phase = — 129; p = 0,0055). Die berechnete Cosinuskurve ist im Diagramm einge tragen.

spricht, die nach der Kur oft ein zunehmendes Wohlbefinden bis zu einem halben Jahr und länger angeben [9, 21].

ZUSAMMENFASSUNG

Influence de l’eau arsenicale de La Bourboule sur le potentiel enzymatique de défense antioxydante chez le rat en normoxie et en hypoxie chronique

C. BLONDEAU, A. MAGNIN, G. TOUBIN, M.T. TRAN, P. MAGNIN *
(Besançon)

L’eau thermale de La Bourboule est une eau riche en oligo-éléments, avec une teneur exceptionnelle en arsenic, réputé toxique. Le mécanisme de cette toxicité est toujours controversé ; il a été suggéré, parmi d’autres hypothèses, que l’arsenic entrainerait une inhibition de certaines enzymes, en particulier celles qui participent aux fonctions de défense antioxydante.

Ce travail vise à comparer les effets de l’eau thermale de La Bourboule à ceux d’une solution arsenicale, vis-à-vis du potentiel enzymatique antioxydant de l’érythrocyte : superoxyde dismutase (SOD), glutathion peroxydase (G.Px).

Rôle de ces enzymes dans l’érythrocyte
La SOD : ce sont des métalloprotéines dont il existe différentes variétés ; la seule forme présente dans le globule rouge est l’enzyme dont le site actif contient du cuivre et du zinc. Elle transforme les anions superoxydes en peroxyde d’hydrogène.

* Pharmacologie, Physiopathologie respiratoire (Pr Magnin), Centre Hospitalier, 2, place Saint-Jacques, 25000 BESANÇON.
La deuxième enzyme importante dans l'élimination des radicaux libres toxiques est la glutathion peroxidase sélénodépendante qui, en présence de glutathion réduit, catalyse la disparition du peroxyde d'hydrogène et de peroxydes organiques.

La catalase, quant à elle, semble jouer un rôle moins important, n'a pas été étudiée au cours de ce travail.

MATÉRIEL ET MÉTHODES

Notre expérimentation a porté sur 60 rats Wistar mâles pesant de 300 à 350 g, répartis en 3 groupes qui reçoivent par administration intra-peritonéale quotidienne :

— l'un du sérum physiologique, constituant le groupe témoin ;
— le deuxième, l'eau thermale à double dose curiste ;
— le troisième, une solution arsenicale correspondant à une concentration en arsenic de 12 ppm.

Après 50 jours d'imprégnation, la moitié des animaux de chaque lot est soumise à une hypoxie chronique normobare (FIO2 10 %) durant 12 jours sans interruption de traitement, l'autre moitié étant maintenue en normoxie.

Les animaux sont placés en caissons étanches munis d'un sos s'accommodant de l'hygiène, en situation hygro et thermo-régulée. Ils sont sacrifiés par décapsulation et leur sang, recueilli sur héparine, permet d'effectuer les examens suivants :

— Mesure des gaz du sang et de l'équilibre acido-basique ;
— Dosage de l'hémoglobine ;
— Mesure de l'hématocrite ;
— Dosage des enzymes antioxydantes érythrocytaires : SOD selon la méthode de Fridouch et Mc Cord ; G.Px selon la technique de Paglia et Valentine.

RÉSULTATS

L'exploitation statistique des résultats expérimentaux montre en normoxie, une diminution significative de l'activité érythrocytaire en G.Px chez les animaux soumis au traitement arsenical comparativement aux témoins, alors que cet effet n'est pas observable chez les animaux traités par l'eau thermale.

En hypoxie, les mêmes variations que précédemment, c'est-à-dire une diminution des taux de G.Px, exclusivement chez les animaux soumis à l'imprégnation arsenicale.

De plus, l'étude comparative entre lots correspondants d'animaux normoxiques et d'animaux hypoxiques conduit à observer que les rats exposés à 10 p. cent d'oxygène présentent, quel que soit le traitement qu'ils ont reçu, une élévation significative de l'activité érythrocytaire en SOD.

L'hypoxie est également responsable d'une augmentation significative des taux de G.Px chez les animaux témoins et ceux traités par l'eau thermale. Seule l'activité en G.Px des rats hypoxiques soumis à l'imprégnation arsenicale ne présente pas de modification par rapport aux rats normoxiques correspondants. Ces résultats confirment ceux que nous avions obtenus lors des travaux antérieurs où nous avions montré que les érythrocytes de rats soumis à une hypoxie chronique développent leur potentiel enzymatique antioxydant en réponse à la surproduction de radicaux libres provoqués par les bas niveaux d'oxygène.

CONCLUSION

Ces résultats expérimentaux nous autorisent à conclure que :

— l'eau de La Bourboule ne possède aucune activité toxique intrinsèque vis-à-vis du potentiel enzymatique antioxydant ;
— l'arsenic seul, au contraire, inhibe l'activité métabolique de la G.Px et exerce une action répressive à l'égard des capacités cellulaires de détoxication des molécules oxydantes ;
— l'eau de La Bourboule qui ne manifeste aucun de ces effets, n'exprime pas, vis-à-vis de l'équipement enzymatique anti-oxydant de l'érythrocyte, la toxicité de l'arsenic qu'elle contient.
De l'incidence de l'eau thermale de la Bourboule sur le métabolisme érythrocytaire en hypoxie chronique normobare chez le rat

G. TOUBIN, A. MAGNIN, C. BLONDEAU, M.T. TRAN, M. MERCET, P. MAGNIN *
(Besançon)

Les premiers travaux sur l'influence des eaux thermales de la Bourboule dans le domaine de la physiopathologie respiratoire datent de la fin du XIXe siècle. Aloy constate, sur une population d'animaux en cure thermale, une diminution de la consommation d'O₂ d'environ 20 p. cent.

Plus récemment, Riché a mis en évidence, sur des souris placées en hypoxie aiguë, une augmentation du temps de survie pour les souris traitées par l'eau de la Bourboule, comparativement à un groupe témoin.

De nombreuses hypothèses ont été émises pour expliquer l'adaptation à l'hypoxie constatée avec cette eau thermale et, en particulier, l'incidence de l'arsenic, l'un des éléments fondamentaux de l'eau de la Bourboule.

Dans le cadre d'une étude des effets de la cure thermale sur le métabolisme et la capacité fonctionnelle érythrocytaire, nous avons étudié les effets de cette eau thermale sur :

- le 2-3 diphosphoglycerate (2-3 DPG), métabolite effecteur du transport de l'oxygène par l'hémoglobine ;
- l'ATP, témoin de l'activité glycolytique du globule rouge.

MATÉRIEL ET MÉTHODES

L'expérimentation a été effectuée sur des lots de rats mâles, recevant en IP soit de l'eau thermale à double dose curiste, soit une solution arsenciale (H3 As O4 ; As = 12 ppm), soit du sérum physiologique (lot témoin). La moitié des animaux a été traitée pendant 60 jours en normoxie normobare, l'autre moitié après 50 jours de normoxie normobare a été placée en hypoxie normobare (FiO₂ = 10 %) pendant 12 jours.

A la fin de la période de traitement, les animaux ont été sacrifiés, le sang a été recueilli sur anticoagulant (héparine) et les déterminations suivantes ont été réalisées :

- contrôle de l'équilibre acido basique et des gaz du sang ;
- mesure de l'hématuroncrite par microméthode ;
- dosage du 2-3 DPG érythrocytaire par méthodes enzymatiques (méthode de Roze-Liebowitz, réactifs sigma) ;
- dosage de l'ATP érythrocytaire par méthode enzymatique (méthode de Bucher, réactifs Boehringer).

RÉSULTATS

L'analyse de l'ensemble de nos résultats révèle que :

- en normoxie aucune différence statistiquement significative n'est mise en évidence pour le 2-3 DPG et l'hématuroncrite entre les 3 lots d'animaux ; le taux d'ATP érythrocytaire est significativement plus élevé dans le groupe des animaux traités par l'arsenic (As) comparativement aux 2 autres lots ;
- en hypoxie le taux d'ATP du lot eau thermale (EB) est plus élevé que celui observé pour les 2 autres lots ; le groupe As présente une concentration en 2-3 DPG érythrocytaire significativement moins élevée comparativement aux 2 autres lots d'animaux.

DISCUSSION

L'incidence propre de l'hypoxie est exprimée, pour les groupes témoins et EB par l'augmentation de l'hématuroncrite, l'arsenic inhibant l'augmentation du flux glycolytique induit par l'hypoxie.

En revanche, chez les animaux traités par l'arsenic, l'hypoxie ne provoque pas d'augmentation significative du métabolisme érythrocytaire, l'arsenic inhibant l'augmentation du flux glycolytique induit par l'hypoxie.

En hypoxie et sous l'influence de l'eau thermale de La Bourboule, le taux d'ATP érythrocytaire, plus élevé dans le groupe EB par rapport au groupe témoin, est en faveur d'une adaptation du métabolisme érythrocytaire à l'hypoxie. Ce mécanisme adaptatif n'est pas retrouvé pour le 2-3 DPG métabolisé de la « respiration globulaire ».

La discordance apparente entre l'amélioration clinique et physiopathologique observée chez les malades après leur cure thermale et l'absence de résultats significatifs au niveau du 2-3 DPG érythrocytaire, nous amène à nous poser quelques questions.

- Les animaux ont été traité par EB en IP, quel est le devenir de cette eau thermale dans l'organisme ?
- L'EB que nous avons utilisé avait été recueillie place et mise en ampoules scellées à La Bourboule, cette conservation a-t-elle modifié la structure chimique de l'As ?
- EB, dont le principe actif semble être l'As, n'a pas la toxicité de l'As ; son activité métabolique est peut-être due à un effet synergique de l'As et des autres métalloïdes présents dans EB.
- L'expérimentation a été effectuée sur des rats, le rat est-il réceptif à l'activité biologique de EB ?

* Pharmacologie, Physiopathologie respiratoire (Pr Magnin), Centre Hospitalier, 2, place Saint-Jacques, 25000 BESANÇON.

Presser thermale et climatique, 1988, 125, no 5.
Stratégie de recherches et de développement en station thermale

Exemple : La station de Barbotan-les-Thermes (Gers)

Ch. GARREAU, B. GARREAU-GOMEZ *

(Barbotan-les-Thermes)

A partir de ce potentiel défini, se posera le problème de son extension possible ou non. Nous le verrons plus loin.

Le recensement des travaux expérimentaux [15]

Ce sont toutes les expériences réalisées avec les gisements thermaux :

— essais sur organe isolé [5] ;
— essais sur animal d'expérience [3].

Le recensement des travaux médicaux

Depuis l'origine des stations, les médecins exerçant dans ce lieu naturel ont eu la curiosité de rassembler des observations cliniques ou de réaliser des expérimentations

Hélas, le plus souvent, il s'agit de travaux, certes originaux, et intéressants, mais dont la rigueur scientifique n'est pas rigoureuse. Dans la littérature, nous trouvons très peu de travaux faits en commun, témoignage d'une réflexion plus collective, plus ouverte à la critique et donc à la synthèse.

Ces travaux sont cependant très précieux, car ils vont pouvoir permettre d'illustrer les indications de base qui ont donné matière à l'orientation des Stations.

Classification par orientations présumées

A Barbotan-les-Thermes, nous en retrouvons plusieurs au cours des siècles. Il faut dire qu'elles sont le fait de médecins spécialistes, intéressés par le traitement en milieu naturel.

— orientations rénales [1, 4, 71] ;
— orientations digestives [5] ;
— orientations circulatoires (veineuses et artériolaires) [8, 9, 10, 14, 17] ;
— orientations ORL [13] ;
— synergie « Circulation - Rhumatisme » [12].

Ainsi, dans une station thermale, les médecins ont souvent traité beaucoup de secteurs de la pathologie, avec le même gisement thermal, mais avec des médicaments différents (chaque pratique est un médicament et la façon de délivrer l'eau ou la boue, entraine des effets différents sur la même fraction de notre organisme). Le thermalisme français a donc été vécu comme une thérapeutique générale, où tout était traité. Les Français allaient aux eaux... et les stations les plus à la mode, les villes les plus importantes, financièrement et politiquement, pouvaient l'emporter et se développer par rapport à de petites stations, presque inexistantes,

* Institut de Recherches Thermales et Médicales (IRTEM), 32150 BARBOTAN-LES-THERMES.

Pressas thermale et climatique, 1986, 125, n° 5.
souvent connues seulement de leur environnement immédiat et pourtant très efficaces.
C'est dire et c'est le 5ᵉ point que :

L'évolution politique et démographique de la commune thermale doit être examiné de près
— L'acceptabilité par la population de ce flot « de curistes ».
— L'acceptabilité financière des infrastructures.
— Les points d'accord et d'opposition entre une commune le plus souvent rurale, un établissement thermal nécessairement « investisseur », une région pas forcément acquise au thermalisme.

Après cette phase de bilan, nous aborderons la phase de la conception.

PHASE DE CONCEPTION

Elle peut se concevoir en 3 volets :
— Evaluation du potentiel thermal.
— La prévision de véritables indications.
— Place possible de la station dans le thermalisme français.

Evaluation du potentiel thermal

La station a-t-elle vraiment un gisement efficace et de quelle abondance ? Ce sont les 2 questions essentielles :

Le ou les gisements

Les moyens modernes de sondage, de forage, permettent d'évaluer le potentiel du gisement thermal [16].

— A Barboton le débit d'eau peut être porté à 5 millions de litre/jour. Les caractéristiques physico-chimiques des eaux sont identiques. Les Bories s'étendent sur plus de 100 hectares avec des couches d'une épaisseur de plus de 4 à 5 mètres.

Compte tenu des évaluations des besoins d'eaux par curiste, il sera possible de traiter 60 000 curistes. Des forages modernes en roche dure ont été fait pour assurer débit et qualité, mettant à l'abri la station de mouvement d'affaissement des couches sédimentaires superficielles.

Recensement des effets

Des expériences fondamentales sont réalisées par le Laboratoire de Pharmacodynamie du Professeur Canellas de l'Unité de Pharmacie de Bordeaux.

Ces expériences permettent d'avancer dans la compréhension des mécanismes d'action des eaux thermales.

Déjà sur le plan circulatoire, on suspecte un effet antiagrégant par l'action de l'eau, sur le mécanisme de régulation. AMP cy et 2 GMP cy qui agiraient sur la synthèse des prostaglandines [2].

Les effets thérapeutiques sont de mieux en mieux précisés, même si le mécanisme d'action n'est pas encore élucléé :
— régulation du tonus-veineux ;
— diminution du volume de stase (volume résiduel) ;
— atténuation du syndrome restrictif et obstructif des séquelles de phlébites ;
— actions mesurées sur les jambes « veineuses et rhumatismales » (gonarthrose, arthrose tibio-tarsienne) ;
— effets mesurés sur les amplitudes articulaires, les signes fonctionnels d'un certain nombre de pathologies rhumatismales ;
— actions antispasmodiques que les acrosystèmes, etc.

Dédiction des orientations thérapeutiques

De ces effets certains, il est aisé de déduire les orientations certaines :
— pathologie veineuse et artériolaire ;
— pathologie rhumatismale ;
— pathologies intriquées (jambes et bras) (circulatoire et rhumatismale) ;
— associées à une action sur la diurèse.
On en déduit aussi les objectifs et les orientations de la recherche :
— mieux préciser le moment du traitement thermal à Barboton dans telle ou telle pathologie veineuse ou rhumatismales ;
— recherche dans le cadre de la pathologie artérielle périphérique et artériolaire, les raisons de certains résultats afin d'en préciser les indications.

Place de la station dans les indications retenues

Ainsi, la thérapeutique en milieu naturel et notamment à Barboton aura une place précise. Elle pourra être prescrite à un moment donné de la pathologie.

Indications veineuses

Les phlébites : très près de l'épisode aigu.

Les séquelles de phlébites : le plus rapidement possible et pendant plusieurs années.

Insuffisance veineuse chronique : de préférence en dehors de l'été au stade de début ; à un stade où la tonicité de la paroi veineuse est récupérable ; les complications des varices.

Indications rhumatismales

Les rhumatismes : en dehors des poussées ; dans tous les cas où s'installe des raideurs ; articulaires, des gènes fonctionnelles, etc.

Les pathologies vasculaires périphériques de type Raynaud : avant les froids de l'hiver.

Enfin, les indications les plus précises possibles ayant été établies, la station peut estimer son développement potentiel dans ce secteur de pathologie actuellement traité en médecine thermale et, non traité, mais existant en France.

Place possible de la station dans le thermalisme

L'importance des gisements thermaux nous permet d'espérer pouvoir traiter 60 000 curistes.

La Pathologie traitée est importante :
— maladies veineuses en France : 10 à 15 millions ;
— rhumatisants en France : 10 à 15 millions.

Son importance dans le thermalisme est réduite :
— maladies veineuses traitées : 70 000 dont 20 000 à Barbotan (1ère station française) ;
— maladies rhumatismales : 200 000 ; à Barbotan 95 p. cent sont des curistes mixtes sur les 22 000 en 1986.

De cette stratégie, nous pouvons envisager la phase de réalisation.

PHASE DE RÉALISATION

L'importance numérique de l'objectif étant défini : 60 000, il convient dans la phase de réalisation que tout soit coordonné pour que le développement soit harmonieux.

Établissement thermal

Avant tout doit donner matière à concours par les architectes à la fois les plus « futuristes » et respectueux des traditions architecturales locales :
— esthétique générale s'intégrant dans le milieu naturel ;
— constructions par unités de soins ;
— techniques de soins modernes et évolutives ;
— espaces d'accueil et de repos ;
— promenades autour du parc.

« Le Patient doit avoir le sentiment de retrouver un milieu naturel... qu'il n'aurait jamais dû quitter malgré sa vie active ».

Recherche thermale

Elle doit être poursuivie et intégrée dans les thermes :
— Protocoles d'observations standardisées avec la participation de tous les médecins volontaires.
— Laboratoire de recherches informatisées avec personnel spécialisé, ouvert à tous. Chaque année, un sujet d'intérêt général sera traité associé à des sujets plus spécifiques.
— Les traitements statistiques, les enquêtes épidermiologiques, les enquêtes d'épanouissement seront menées en même temps.

La cité thermale et son environnement

Il ne peut y avoir de grand développement thermal sans un consensus entre l'exploitant thermal (qu'il soit public ou privé) et les élus communaux, cantonaux, départementaux, régionaux.

Les règles du jeu doivent être définies par un contrat thermal (6) où seront prévues :
— les structures d'hébergement et d'accueil : maison du curiste ; hôtels ;
— les structures d'agrément : salles de spectacle ; espaces verts, lacs ; installations sportives, hippodrome, golf, tennis, etc. ; salle de congrès et/ou casino...

Ainsi peut être conçu le développement d'une station thermale sur l'exemple de celui de Barbotan dont nous rappellerons les objectifs.

OBJECTIFS

Barbotan 60 000 curistes en l'an 2000 ; un établissement ultra-moderne ; des techniques de soins toujours améliorées ; une recherche thermale au service de la santé ; une université thermale et rurale inter-âge au service de la culture, du corps et de l'esprit.

Ce lieu privilégié où l'éducation sanitaire cotoie la thérapeutique et l'épanouissement culturel, aboutira à faire du thermalisme, une voie thérapeutique en milieu naturel.

REFERENCES

Presse thermale et climatique, 1988, 125, n° 5.
L'éducation sanitaire des curistes en station thermale

J. LOUIS, R. LOUIS *
(Bourbon-Lancy)

Depuis plusieurs dizaines d’années, les progrès de la médecine sont spectaculaires. En contrepartie, le coût du poste santé s’est accru de façon vertigineuse, aussi bien dans le budget des états que dans celui des particuliers. La banqueroute menace les systèmes de protection sociale, et les gouvernements cherchent « frénétiquement » à développer les mesures qui pourraient contribuer à freiner les dépenses de santé. Dans cette optique, l’éducation sanitaire du public devient de plus en plus une nécessité impérieuse.

Les médecins sont tout à fait conscients de l’importance de cette éducation sanitaire, et pour eux, ce n’est pas une découverte récente, bien que les implications financières n’aient pas été celles qui les aient le plus motivés et préoccupés à l’origine.

En effet, les médecins savent que leur rôle n’est pas terminé lorsqu’ils ont posé un diagnostic et prescrit un traitement. Ils doivent au surplus obtenir aussi complètement que possible la coopération de leur patient. Dans ce but, il est indispensable d’apporter à celui-ci toutes les informations susceptibles de mieux lui faire comprendre sa maladie et les soins qu’elle nécessite.

Toutefois, si l’information donnée au patient individuellement lors de la consultation est indispensable, elle n’est pas à elle seule suffisante ; elle doit être complétée par celle de l’entourage du malade à chaque fois que c’est possible. Au-delà, c’est le grand public lui-même qui doit se trouver concerné.

On pourrait penser que l’éducation sanitaire des populations est convenablement assurée, par la presse, la radio ou la télévision. Ces moyens d’information donnent, il est vrai, une place de plus en plus importante à tout ce qui touche à la médecine. Pourtant, il est tout à fait étonnant de constater à quel point les problèmes de santé sont en fin de compte mal connus, les notions les plus élémentaires ignorées. Dans nos pays même, que l’on qualifie de « développés », les idées fausses, les préjugés, les superstitions sont encore très largement répandus, et ils doivent être constamment combattus et redressés.

A notre avis, si l’information médicale, pourtant très abondante, est si mal assimilée, c’est faute d’un contact direct entre les médecins et le public.

Seul ce contact permet d’établir un véritable dialogue, un échange fructueux et approfondi entre le profane et l’homme de l’art qui connaît les messages à transmettre.

Or, l’expérience montre que ce dialogue est souvent difficile à établir. Le premier obstacle à franchir consiste à faire rencontrer dans un même lieu des auditeurs intéressés, en nombre suffisant, et des médecins qualifiés et disponibles pour leur parler.

Même dans des milieux particulièrement ouverts et directement intéressés par ces problèmes de santé (associations familiales, école des parents, associations de personnes âgées par exemple), seul un public restreint est touché et la fréquentation des réunions reste médiocre.

Ceci s’explique évidemment par toutes les contraintes de la vie moderne, qui ne permettent pas de dégager facilement des temps de réflexion et de disponibilité suffisants. Au surplus, le public veut bien à l’occasion écouter d’une oreille plus ou moins attentive des informations radiodiffusées, ou regarder une émission à la télévision, mais il rechignerait à sortir hors de son domicile pour participer à une réunion d’information médicale. S’il le fait, ce sera occasionnel et une telle événuité ne se renouvelera pas souvent.

En matière d’action d’éducation de la santé, le public ne pourra donc être attiré facilement ni fréquemment : une préparation minutieuse devra précéder la manifestation prévue et il sera nécessaire de faire appel à toutes les ressources d’une publicité bien structurée. Si possible, la réunion s’intégrera dans le cadre d’une « campagne nationale » débouchant sur l’organisation d’une « journée publique », ce qui renforce l’impact promotionnel.

A l’opposé de ces manifestations épisodiques, souvent spectaculaires dont le succès réel est bien difficile à apprécier et dont l’efficacité reste aléatoire, il nous paraît que les stations thermales pourraient constituer l’un des lieux privilégiés de l’information du public sur les problèmes de santé et sur l’éducation sanitaire.

Ces stations, en effet, voient affluer pendant leur période d’ouverture, une population de curistes importante, qui va selon les cas de quelques centaines à plusieurs milliers.

Pendant leur séjour en station thermale, les curistes sont naturellement conduits à s’intéresser de façon accrue à leur maladie. Tout incite à cette ouverture :

— les soins thermaux les conduisent à consacrer une part de leur temps plus importante qu’à l’ordinaire aux soins nécessités par leur état ;

— le fait d’être confrontés, pendant leur séjour, à d’autres patients atteints d’affections de même type, à des degrés divers, les amène à faire des comparaisons sur la gravité de leur maladie et du handicap dont ils sont atteints ;

— au-delà de ces comparaisons, s’installe rapidement une sorte d’émulation pour obtenir les meilleurs résultats thérapeutiques possibles ;

— l’échange d’informations entre curistes (parfois exactes, souvent erronées), surtout celles concernant les traitements, conduisent certains d’entre eux à s’interroger sur le bien fondé des soins qui leurs sont donnés ;

— enfin, une fois remplies leurs obligations thermales journalières, les curistes ont une disponibilité bien plus grande qu’habituellement ; ils sont de ce fait plus réceptifs aux sollicitations des programmes d’animations qui leurs sont proposés.

Il est facile de comprendre, dans ces conditions, que ces

* 2, place d’Aligre, 71140 BOURBON-LANCY.
curistes soient particulièrement ouverts aux activités d’édu-
cation sanitaire. C’est pourquoi, nous avons entrepris à
Bourbon-Lancy depuis plusieurs années une action de ce
type qu’il nous paraît intéressant de rapporter.

A vrai dire, notre expérience dans le domaine de l’édu-
cation sanitaire date déjà de plusieurs dizaines d’années :
elle a débuté dans un milieu tout à fait différent de celui
qui nous préoccupe ici et nous nous sommes toujours depuis
dans, vivement intéressés à ce problème.

Il y a une dizaine d’années, nous avons d’ailleurs présenté
e à la Société Française d’Hydrologie (conjointement avec
J. Françon, A. Pajaud et P. Deslous-Paoli) un rapport sur
« l’éducation sanitaire des rhumatisants dans les stations
thermales ». Nous mettons l’accent à l’époque sur l’impor-
tance du rôle du médecin thermal dans l’éducation indivi-
duelle et personnalisée de chaque curiste lors des consulta-
tions au cabinet médical.

Nous ajoutons : « une autre forme d’éducation est repré-
sentée par les réunions d’information, organisées pour la
collectivité des curistes ; elle n’est encore qu’ébauchée ».
Nous terminons notre rapport en faisant état d’une expé-
rience réalisée à Aix-les-Bains pendant la saison 1975 et
qui associait plusieurs éléments :
— permanence d’une assistante sociale pour aider à ré-
soudre les problèmes sociaux des curistes ;
— exposition permanente de matériels d’aide et d’or-
thèse destinée à faciliter aux rhumatisants invalides les actes
usuels de la vie quotidienne ;
— organisation de réunions d’information destinées aux
curistes et aux rhumatisants de la région et animées par
deux ou trois médecins de la station.

Les promoteurs de cette action insistèrent sur le succès
de ce type de réunion qui, après un démarrage difficile,
avoient réussi à attirer 100 à 120 auditeurs par séance ; mais
ils signalèrent aussi qu’ils étaient bien malaisés de renouveler
les thèmes abordés. Actuellement, cette expérience d’Aix-
les-Bains se poursuit régulièrement dans des conditions au-
tefois différentes de celles que nous avons instituées à
Bourbon-Lancy.

Personnellement, après avoir organisé dans notre station
quelques réunions épidémiques d’éducation sanitaire du type
de celles d’Aix-les-Bains, nous avons réussi à mener, à partir
de 1980, une action régulière poursuivie depuis sans inter-
ruption.

L’organisation de ces activités d’éducation sanitaire se
faisait sous le patronage direct de la section Bourgogne de
l’Association française de lutte anti-rhumatismale (AFLAR).
Elle est réalisée grâce à l’appui des autorités locales (muni-
cipalité, office du tourisme, station thermale, association des
médecins de Bourbon-Lancy) et elle est incluse dans le pro-
gramme d’animation de la station. A noter que la direction
départementale de la Santé peut attribuer, sur présentation
d’un dossier, des subventions de fonctionnement.

Les réunions d’information ont lieu régulièrement toutes
les trois semaines, ce qui permet, en pratique, à tous les
curistes fréquentant la station, d’y participer s’ils le désirent.

Elles se tiennent l’après-midi, vers 17 heures, moment qui
s’est révélé le plus propice : en soirée, les curistes ne dési-
rent habituellement pas sortir et le matin ils sont évidem-
ment indisponibles en raison des soins thermaux.

Chaque séance est animée par un rhumatologue de la
région ou d’autres régions sanitaires, ordinairement mem-
bre de l’AFLAR. Il présente le ou les thèmes de la réunion,
entendu, il engage le dialogue avec l’assistance et répond
aux questions posées. Habituellement, le conférencier change
tant que le ticket de supervision des personnes âgées
séparées en deux groupes différents. Néanmoins, il est neutre
à se rendre en face au même conférencier tout au long de la saison,
months essentiellement en raison du sujet très spécialisé choisi.

Etant donné le faible nombre de rhumatologues dans la
station, et pour éviter des situations conflictuelles entre mé-
decins locaux, nous avons préféré faire appel uniquement à
des conférenciers étrangers à Bourbon-Lancy.

Pendant toute la durée de la saison thermale, c’est le
même programme qui est à chaque fois répété. Cela n’est
pas grand inconvénient puisque la périodicité choisie (21
jours) entraîne l’arrêt renouvellement du public à chaque
séance.

Les sujets abordés peuvent être traités, tantôt sous forme
de conférence, illustrés en général par des diapositives,
tantôt sous forme de projection d’un ou plusieurs films,
tantôt en face avec présentation de matériel d’orthèse ou de
gadgets. Nous détaillons dans le tableau I les thèmes abor-
dés jusqu’à présent.

Initialement, les thèmes choisis concernaient exclusive-
ment la pathologie rhumatismale. Au fil des années, nous
sommes devenus moins éclectiques et nous abordons à pré-
sent des thèmes médicaux variés ; mais un sujet de patho-
logie de l’appareil locomoteur au moins est toujours pro-
grammé à chaque séance. Nous nous inspirons fortement,
pour le choix des thèmes, des demandes faites par les
auditeurs d’une année sur l’autre.

Chaque exposé, chaque film est suivi de discussion avec
l’assistance. Les questions posées sont tout d’abord directe-
ment centrées sur le sujet qui vient d’être exposé, puis,
peu à peu, les interrogations deviennent et des thèmes plus
divers sont abordés. Toujours de longues explications sont
récamés sur les thérapeutiques parallèles, naturellement les
plus controversées. C’est alors qu’apparaît, avec évidence,
la nécessité incontournable d’une éducation sanitaire bien
dite et bien solide.

Chaque réunion est terminée par la diffusion de brochures

<table>
<thead>
<tr>
<th>Année</th>
<th>Sujets traités</th>
<th>Type de conférence</th>
</tr>
</thead>
<tbody>
<tr>
<td>1980</td>
<td>Qu’est-ce que le rhumatisme ? Peut-on le guérir ? Exposé avec schémas au tableau</td>
<td></td>
</tr>
<tr>
<td>1981</td>
<td>Doit-on opérer les rhumatismes ? Exposé et diapos</td>
<td></td>
</tr>
<tr>
<td>1982</td>
<td>Existe-t-il un régime pour les rhumatisants ? Exposé avec schémas au tableau</td>
<td></td>
</tr>
<tr>
<td>1983</td>
<td>Comment protéger vos articulations ? Film-exposé et diapos-pression de matériel</td>
<td></td>
</tr>
<tr>
<td>1984</td>
<td>L’électrocardiogramme Le tour de rein</td>
<td>Films 15 min</td>
</tr>
<tr>
<td>1985</td>
<td>Les activités physiques et sportives des personnes âgées</td>
<td>Films 15 min</td>
</tr>
<tr>
<td>1986</td>
<td>Les rhumatismes abarticulaires La sédentarité</td>
<td>Présentation de matériel</td>
</tr>
<tr>
<td>1987</td>
<td>L’artérite des membres inférieurs Apprenez à ménager vos pieds ! Exposé et schémas au rétromultiplicateur</td>
<td></td>
</tr>
</tbody>
</table>
d’éducation sanitaire, surtout dans le domaine des maladies rhumatismales et ostéo-articulaires.

Lors de telles séances, trois écueils sont à redouter.

— En premier lieu, il faut éviter les exposés ou les commentaires trop scientifiques, trop « doctoraux » qui risqueraient d’être difficilement compris du public. En particulier, il est capital de bannir soigneusement toute terminologie trop spécialisée, toute formulation érotique. Il est absolument nécessaire d’utiliser des mots simples et compréhensibles par tous, les schémas ou les illustrations doivent être très clairs et bien lisibles et suffisamment abondants et précis.

— En second lieu, il est déconseillé de se transformer en distributeur de recettes thérapeutiques. Ce n’est pas le but d’une éducation sanitaire, et, au surplus, elles risqueraient d’être mal comprises et mal utilisées par les auditeurs !

— Le troisième obstacle à contourner est le plus sérieux. À chaque séance, il se trouve toujours un ou deux assistants qui éprouvent le besoin d’exposer leur cas personnel. Il est impératif de couper court d’emblée à de telles tentations, et de renvoyer l’intéressé à son médecin habituel. Les conférenciers qui, par malheur, ont essayé de répondre à un premier intervenant se sont vus en quelques minutes accablés sous l’exposé des problèmes de dizaines de personnes. Cela est à éviter à tout prix !

Le succès des conférences dans notre station a été d’emblée total. À chaque fois, un public de 150 à 250 personnes était présent. Un tel chiffre est considérable et permet d’estimer que tout au long de la saison thermale, près de la moitié des curistes et de leurs accompagnants ont été touchés.

Il est évident que ce type d’éducation sanitaire est bien supérieur aux enseignements des articles de presse, de livres, d’emissions radio-télévisées. Il permet, en effet, de préciser immédiatement certains problèmes délicats, de rectifier quelques interprétations erronées, de dissiper des confusions ou des faux espoirs.

Le dialogue avec le public est absolument irremplaçable et fait tout l’intérêt de telles réunions, à la fois pour les assistants et pour le conférencier.

Pour les premiers, elles sont l’occasion de mieux connaître leur maladie, les possibilités de traitement qui leur sont apportées, de préciser les règles d’hygiène de vive, et de dissiper bon nombre d’équivoques.

Mais l’intérêt est également considérable pour les organisateurs eux-mêmes, et pour le conférencier. En effet, il leur est ainsi possible de mieux cerner l’image que les patients se font de leur maladie, le crédit qu’ils accordent aux divers traitements, les mythes et les légendes qui circulent dans le public à propos de la médecine, des maladies et des malades.

Ceci doit nous permettre, en fin de compte, une meilleure approche de nos patients afin de les mieux soigner et nous inciter à développer encore les activités d’éducation sanitaire dans les stations thermales.
Le Professeur Boulangé, organisateur du XXXᵉ Congrès international d’Hydrologie et de Climatologie médicale, m’a demandé de coordonner les travaux de cette session consacrée à la médecine thermale et au sport.

Aix-les-Bains m’a permis de vérifier sur place l’efficacité des techniques thermales, à la Villa Forestier, en exerçant l’hydro-rhumatologie et aussi la Médecine du sport, ou plus exactement la médecine de terrain, en relation avec les Docteurs Jacques et François Forestier et Mademoiselle Certonciny.

Cette approche sportive auprès des curistes, il y a 15 ans, m’apparaissait encore inadaptée, alors que paradoxalement la thalassothérapie ne souffrait pas de cette situation.

Les choses ont évolué avec le thermalisme moderne et, sans renier les expériences du passé, de nouvelles voies sont apparues.

Cinéiologie, qui est une revue de médecine du sport de référence, à diffusion nationale et internationale, s’est fait l’écho de cette approche, comme l’avait d’ailleurs admis quelques années auparavant la Presse thermale et climatique. Ainsi, Cinéiologie a consacré deux numéros spéciaux :
— l’un à la Médecine du Sport et au Thermalisme ;
— l’autre à la thalassothérapie et la remise en forme du sportif.

Ces deux numéros ont été à l’origine de débats dans le cadre des différents salons des thermalies à Paris. La grande

* 1, rue d’Alsace, 49100 ANGERS.

La session qui va suivre tient largement compte de ces préoccupations, et nous avons convenu de la diviser en 3 volets :
— le premier volet sera exposé par le Professeur Hugues Monod et intéressera notamment les aspects thermaux dans la préparation des athlètes ;
— le deuxième volet, qui sera présenté par les Docteurs Claude Vacher et Francisque Commandré, portera plus particulièrement sur la réparation des blessés et ces différentes pratiques thermales qui peuvent leur être proposées ;
— le troisième volet sera présenté par le Professeur François Besançon qui insistera, comme il l’a déjà fait aux Entretiens de Bichat de septembre dernier, sur les stations thermales au service de l’éducation et des activités sportives des bien portants.

Presses thermales et climatiques, 1988, 125, n° 5.
L’image des stations thermales que nous livrent les médias n’est plus ce qu’elle était autrefois. Les romanciers du siècle passé y avaient souvent placé les intrigues galantes d’une société aisée et oisive qui avait besoin plus de délassement et de distraction que de soins. Combien de stations ont du leur succès aux joies de leur casino plus qu’au plaisir d’une guérison. Des cureuses médicales justifiées étaient cependant prescrites à juste titre aux podagres, aux scrofulexes, aux anémiques, aux hépatiques ou aux cathareux, pour lesquels les thérapeutiques habituelles restaient sans effet. Rappelons Daumier d’avoir ajouté à cette énumération les hypodermiques.

Le repos était alors la règle. Le curiste était astreint au minimum énergétique musculaire, cardiaque et respiratoire. Il était dehors le temps d’aller de sa chambre à la source ; le reste de la journée se passait assis, y compris l’heure de table. Il s’agissait d’abord de rendre la santé à des sénile-taires. Le sport ne convenait pas : on n’allait pas aux eaux pour chevaucher le griffon.

Aujourd’hui, les stations thermales ont changé de visage. L’habitat s’est modernisé ; de nouvelles routes ont rendu les accès plus faciles. Des équipements de loisir et de sport ont fait leur apparition. Certes, la clientèle bénéficiant de prescriptions médicales éclairées fréquente toujours ces stations ; mais on voit s’y mêler de nombreux sportifs en survêtements, courant à leur rythme dans leur refus de la sénilité. Il s’agit d’une clientèle nouvelle, relativement bien portante, exigeante, recherchant une remise en forme et un équilibre pondéral momentanément perdu.

On peut à ce titre distinguer plusieurs cas de figure.

— Le sportif jeune, de haut niveau, venu souvent en équipe, à l’instigation de son entraîneur, apprécie la station thermale pour son calme, sa situation retirée, à l’écart, où il peut suivre un entraînement préparatoire à la compétition et bénéficier d’un repos réparateur de très bonnes conditions. Certaines stations se sont spécialisées dans l’accueil de sportifs dans le cadre de la préparation olympique.

— Le sportif chevronné, ayant 10 ou 20 ans de pratique régulière, tout en se soumettant à des prescriptions thermales, souhaite maintenir sa forme physique, de sorte que trois semaines de cure ne soient pas une période de désentraînement.

— Le sénile, privé d’exercice par la vie citadine, préoccupé par un excès de poids, tente de perdre son poids de forme, en équilibrant une alimentation de bonne qualité, mais prise en quantité raisonnable, avec une dépense énergétique dépassant ses habitudes et correctement prescrite.

— Le cadre surmené, victime de la pollution atmosphérique et sonore, atteint par les effets combinés du tabac et du café, par l’abus des cocktails et des repas d’affaires, montrant des signes évidents de dépression physique et parfois psychique, recherche dans un stage de remise en forme un remède à ses maux. La pratique d’une activité sportive modérée, qu’il a délaissee depuis longtemps, peut lui redonner le tonus nécessaire à la reprise de ses activités professionnelles.

— Même le bénéficiaire de la sécurité sociale, malade multifragile, venu en cure preventive d’équilibre, ressent comme un bénéfice psychologique un minimum d’activité physique, qui constitue un antidote efficace à l’ennui. La cure thermale peut être pour lui l’occasion de découvrir les bienfaits des activités physiques et sportives.

— Enfin le Monsieur ou la Madame « Tout le monde » peut se trouver bloqué dans une station thermale comme simple accompagnant d’un parent ou d’un époux. II s’agit peut être d’un sportif qui ne sait encore.

Quelle doit être l’attitude des médecins thermaux devant ces différentes éventualités ? Il faut d’abord rappeler ce que disait Cotella (1986) dans sa thèse :

« Tout séjour de remise en forme doit commencer par une interrogation et un examen médical sérieux, ceci afin de dépister éventuellement une affection inconnue du patient, et de prescrire des soins... et des activités physiques adaptées à chacun, ou de poser des contre-indications si nécessaire ».

Mais le médecin thermal a-t-il reçu une formation suffisante pour cela ? Parfois oui, parfois non. Cela dépend beaucoup de ce qu’il a pu apprendre au cours de ses études et de son expérience personnelle. Le médecin thermal, confronté aux différents problèmes posés par la pratique d’activités physiques et sportives dans sa station, devrait pouvoir :

— établir un certificat de non contre-indication à la pratique des sports organisés sur place ou récemment introduits, en se rappelant qu’il est plus difficile d’affirmer la normalité d’un individu que l’affectation plus ou moins déclarée d’un malade. L’établissement du certificat doit être précédé par un examen des appareils locomoteurs, pulmonaires et cardiovasculaires, et comporter un ECG au repos et à l’effort léger, type Ruffier ;

— orienter un nésophyte, quel que soit son âge, vers les activités physiques les plus en rapport avec ses aptitudes, limités ou non par un processus pathologique ; conseiller parallèlement les équipements convenables (bicyclette, raquette, chaussures, etc.) ;

— conseiller le sportif de plus de 40 ans, ou même celui qui ne les a pas atteints, mais qui a décroché pendant plusieurs années après une période de grande activité. Il s’agit de dire à quel rythme (en temps et en intensité) l’activité sportive peut être entreprise. R. Shephard, au Canada, a montré que la pratique moderne mais continue d’une activité physique est un facteur important de longévité. Le suivi de la fréquence cardiaque à l’aide d’un enregistreur

* Service de Biologie et Médecine du Sport, Hôpital de la Pitié, 91, boulevard de l’Hôpital, 75013 PARIS Cedex 13.
portatif peut rendre de grand service pour apprécier la réponse du cœur à l’effort ;
— dialoguer avec les entraîneurs, ou les médecins du sport plus spécialisé, lorsque ceux-ci accompagnent des équipes de haut niveau ; il faut pour cela comprendre le contenu d’un dossier sportif, la signification des principaux tests utilisés pour le suivi bio-médical de l’entraînement, l’intérêt de la mesure des performances aérobie et anaérobie, de la détermination de la lactatémie à l’effort ;
— traiter la petite pathologie, traumatique ou cardiaque, et dans ces domaines savoir ne pas faire d’erreur et compter sur les spécialistes en cas de besoin ;
— enfin, établir un bilan nutritionnel et équilibrer sur le plan énergétique les sorties (exercice physique) et les entrées (alimentation), ou éventuellement créer un déséquilibre dans un sens ou dans l’autre (maigreur-surcharge pondérale).

L’acquisition d’une double compétence apparait donc une nécessité compte tenu d’un certain transfert de clientèle dans un grand nombre de station. Un tel objectif implique une double approche pour les jeunes générations, thermale et médico-sportive (cela coule... de source !), dès la formation initiale, et pour les médecins déjà en place par un complément d’enseignement, à l’occasion de séances de formation continue ou lors de réunions médicales diverses tenues dans les stations thermales ou dans les centres universitaires les plus proches.

Les stations thermales au service de l’éducation et des activités sportives des bien-portants

F. BESANÇON *
(Paris)

L’échec des Jeux Olympiques à Paris pourrait donner le signal d’une réorientation du sport, et le rôle des stations thermales pourrait être déterminant.

Au début du siècle, on ne parlait que des bienfaits du sport. Le discours a bien changé. Les titres des publications des médecins du sport sont conternants : il n’est question que d’accidents. Ce dérapage dans le discours n’est que la conséquence d’un dérapage dans les comportements, vers la compétition. Au niveau actuel, les gains en performance ont un coût prohibitif, le coût humain comme le coût financier.

Dans une Table Ronde aux Entretiens de Bichat, nous avons proposé de recentrer l’intérêt sur Monsieur et Madame tout le monde. Ils ont tous fait du sport, et presque tous ont abandonné. J’ai rendu visite à des peuples réputés sportifs. Ce sont les femmes qui m’ont dit la vérité : à 30 ans, nos sportifs s’assoient devant la télévision, et c’est fini. Pourquoi ces abandons ? Dans l’ambiance sportive actuelle, le moment vient où l’on piétine, où l’on se fait mal, où l’on se dégoûte. Le dérapage se termine en tête à queue.

Pourtant, il y a d’authentiques sports de santé, mais ils doivent à notre avis satisfaire à 5 conditions :
— sports accessibles 52 semaines par an ;
— sports sans compétition ;
— sports développant l’endurance ;
— sports entretenant la souplesse ;
— sports de plaisir, oui, le plaisir est capital.

Très peu de sports répondent à ces 5 conditions : la marche, la course de fond, la natation de fond, et la bicyclette. Certes, d’autres nous intéressent, comme la planche à voile, l’alpinisme et le ski de fond, mais il est exceptionnel d’y accéder 52 semaines par an.

La marche est à juste titre en honneur dans les stations thermales ne serait-ce parce qu’elle est la première étape avant de monter en puissance, surtout à partir d’un certain âge. Il est excellent d’agrémer la marche, et elle prend alors d’autres noms charmants, la pêche à la truite, le golf, la chasse, le tir à l’arc, la chasse photographique, l’ornithologie, la botanique. Il faut être capable de marcher une heure sans souffrir pour accéder aux sports suivants.

Mon préféré est la course de fond appelée aussi le trot, la jogue, ou le cross-country. Son succès actuel est un raz-de-marée. L’objectif minimum, à atteindre par étapes progressives, me paraît être de 25 minutes une fois par semaine, en terminant par un sprint de 100 à 200 m.

Les avantages sont que :
— tout le monde peut trouver le temps, 52 semaines par an ;
— tout le monde peut se l’offrir : conseillez seulement des chaussures de jogue : c’est divin, parole de pieds de mandarin ; les vêtements ne doivent pas être chauds, sauf quand il gèle ;
— tout le monde a les plus grandes chances de persévérer.

Le risque d’abandon est négligeable. Ce que j’aime, dans le trot, c’est cette impression de sport complet, qui apporte le souffle, les muscles, la souplesse, l’équilibre, le contact avec la nature, le plaisir.

* Directeur, Institut d’Hydrologie et de Climatologie, Hôtel-Dieu, 75181 PARIS Cedex 04.

Prose thermale et climatique, 1988, 125, n° 5.
La bicyclette répond aux 5 conditions. Elle s’exerce en plein air avec une facile évacuation des calories. Sur la bicyclette on est porté, ce qui convient aux articulations vieillisissantes des membres inférieurs. En revanche, les vertèbres cervicales sont peut-être moins heureuses que dans la course de fond. La bicyclette ne courbe pas le dos. Elle ne fait pas grossir les mollets de façon disgracieuse. Il faut enseigner la façon précise de régler la position de la selle et du guidon. La bicyclette demande davantage de temps disponible que la course de fond.

La natation de fond, sans visée de compétition, est particulièrement favorable aux colonnes vertébrales et articulations déjà douloureuses, du fait qu’on est intégralement porté. Toutefois, certains muscles sont exclus de la fête, précisément ceux qui développent la course à pied.

Ces 4 sports exigent des préalables et des conditions communes : l’examen préalable, l’équipement, la diététique, l’échauffement, la progression.

L’examen préalable et les examens de surveillance sont du ressort du médecin traitant pour les cas simples, notamment pour les sujets qui débutent les sports de santé avant 40 ans, et qui persévèrent. Par contre, les cardiologues et les médecins du sport seront mis à contribution dans les autres cas. Il est essentiel d’éviter les morts subites imputables à l’insuffisance coronarienne et aux myocardopathies latentes. Il n’est pas question de prescrire à tout le monde une échocardiographie, ni une épreuve d’effort, ni une mesure de consommation d’oxygène sur une bicyclette ergométrique. Néanmoins, ces examens sont à conseiller dans des cas particuliers.

Le choix de l’équipement n’est pas du domaine du médecin mais celui-ci doit insister sur la qualité, la bonne adaptation à l’individu : notons familières aux alpinistes, moins familières à l’ensemble de la population.

La diététique des sports d’endurance est moins sophistiquée que celle de la compétition. Il faut éviter la déshydratation, l’hypoglycémie, bien répartir les hydrates de carbone à transfert lent.

L’échauffement est si important que tout médecin devrait être capable d’en faire la démonstration. Dans les stations thermales, il ne manque pas de kinésithérapeutes pour y contribuer. Le principe est d’alterner les contractions et les étirements musculaires.

La progression dans les distances à parcourir est fondamentale, aussi bien pour éviter les incidents que pour ne pas heurter le principe de plaisir.

Les aspects psychiques des sports de santé ont été analysés très finement, aux Entretiens de Bichat, par le Dr Jérôme Duche au nom de l’expérience à la fois de psychiatrie et de marathoniens. Les sports peuvent apporter le calme à ceux qui recherchent la détente dans le tabac, les psychotropes, une consommation peut-être excessive d’alcool. Le sport est un exutoire de l’agressivité. Il apporte une réassurance narcissique aux nombreux sujets qui manquent de confiance en eux-mêmes, les semi-dépressifs. Bien sûr, le sport n’est pas une psychothérapie suffisante dans les névroses, mais il rend service dans des quantités d’états pré-névrotiques qu’il serait excessif de médicaliser.

Il faut conseiller d’après la personnalité du sujet. Par exemple, les timides peuvent tirer bénéfice des sports d’équipe, bien que tous les sports d’équipe soient des sports de compétition. Les sujets agressifs, à condition d’être bien encadrés dans certains sports de combat, peuvent apprendre à devenir maître de leurs réactions. Des sujets à tendance obsessionnelle se trouvent à l’aise dans des sports où abondent les rites.

Les sports de plaisir intéressent les psychiatres dans la mesure où l’on accuse les sportifs tantôt d’être masochistes, tantôt de rechercher un plaisir trouble, presque une drogue. Peut-être se trouve-t-il des masochistes, mais, pour l’immense majorité, la progression dans l’entraînement permet de rendre agréable, à la longue, l’exercice qui serait dégénérant pour d’autres, et c’est là tout le contraire d’un masochisme.

A l’opposé, le sport est-il une drogue ? Il est confirmé qu’une sorte de plaisir, d’insensibilité à la peine se manifestent dans la course de fond. On décrit même des sportifs en état de manque, qui ont des impatiences dans leurs jambes quand ils n’ont pas leurs 100 km de course à pied chaque semaine. Il est possible que des sujets prédisposés aux toxicomanies se trouvent dans le vaste milieu sportif, et qu’ils y extériorisent leurs prédispositions. Admettons que pour eux le sport soit une drogue, mais avouons que c’est la moins dangereuse de toutes ! De toute façon, on ne peut pas aller loin dans l’assimilation, parce qu’on n’a pas décrété, chez les sportifs, le myosis, l’anorexie, la constipation ni le déficit sexuel habituel des drogués.

Maintenant quels sont les bienfaits somatiques ? Il n’y a pas seulement l’acquisition de l’entraînement, de la performance en temps que telle, l’amélioration des fonctions cardiaques et respiratoires. Les risques cardiovasculaires sont diminués quand l’activité physique est régulière. Cela, bien que certaines activités comportent un risque coronarien, notamment après 50 ans, et quand on ne respecte pas les précautions que nous avons à enseigner. Les effets favorables du sport sur la tension artérielle sont significatifs, au repos et encore plus à l’effort. Le cholestérol HDL augmente, tandis que diminuent le cholestérol LDL et les triglycerides. On a maintenant le droit de prescrire l’activité physique aux hypertendus, chez qui elle n’est pas contre-indiquée. Après l’appareil circulatoire, c’est le système ostéo-articulaire qui est le grand bénéficiaire. La tendance à l’ostéoporose est freinée, tandis qu’augmente l’épaisseur des cartilages articulaires, et ceci compte dans la prévention de l’arthrose. Il faut souligner avec force que certains excès sportifs favorisent les arthroses, tandis que les efforts réguliers du cycliste sont favorables.

À l’intersection des bienfaits psychiques et somatiques, on aimerait décrire en termes modernes ce qu’on appelle communément la condition (et non la forme). Être en condition, c’est avoir une colonne vertébrale souple et redeviene indolore, jusqu’aux vertèbres cervicales. C’est marcher d’un pas élastique, avec des membres inférieurs qui ressentent quotidiennement leur réserve de puissance. C’est ne pas avoir de courbatures au lendemain d’un exercice musculaire. C’est une impression d’équilibre, d’agilité, Bref, une qualité de la vie.

Il y a lieu maintenant de moduler ce qui vient d’être dit en fonction des sujets âgés comme des enfants, qui sont les clients des stations thermales.

Chez les sujets âgés, il s’agira d’activités plus que de sports. La marche, avec ses variantes tient la première place, tandis que la course a moins d’adeptes. La natation est très importante tandis qu’en bicyclette il faut mettre en balance les bienfaits avec leurs risques de plus grande gravité des fractures. En revanche, on devrait mettre davantage l’accent sur la danse sous ses multiples formes. Le rythme et la musique sont d’utiles stimuli, et il faut
favoriser tout ce qui améliore l'équilibre chez les sujets âgés, en raison de la fréquence et de la gravité des fractures du col du fémur. En outre, la danse plait beaucoup à cet âge.

La convivialité des activités est importante. Ces sujets sortent de leur isolement. Ils souffrent moins du sentiment de dépréciation.

A propos des enfants, il ne faut pas trop se laisser freiner par les parents, et il faut un peu freiner les enfants. En effet, les parents freinent en croyant que le sport ne nuit aux performances scolaires alors qu'on a démontré l'inverse. A l'opposé, les enfants ont tendance à aller trop loin, à dépasser leurs limites, et le risque d'accident, de dégoût et d'abandon est à la clef, spécialement à l'âge pubertaire.

Ces sports de plaisir et de santé, comment les stations thermales vont-elles les enseigner, et les promouvoir concrètement ? Ce n'est pas d'aujourd'hui qu'elles ont multiplié les installations. Certaines conviennent parfaitement aux sports de plaisir et de santé tandis que d'autres sont là pour des raisons variées comme les goûts spontanés de la clientèle, l'indispensable rentabilité, le prestige, les remises de prix avec leur écho dans les médias. Respectons cet héritage, mais mettons notre ambition à donner toute leur place aux sports et aux activités de plaisir et de santé. II y a 20 ans, les stations françaises avaient un immense retard dans le domaine des piscines, des plans d'eau, des parcours de marche, mais d'importants progrès ont été accomplis. En premier lieu, l'accent est à mettre sur l'éducation, en prenant appui non seulement sur le Corps médical, mais aussi sur les kinésithérapeutes et les diététiciennes.

Le titre du présent article ne signifie pas que nous voulons remplacer les malades par les bien-portants, dans les stations. L'éducation sportive des bien-portants vise ici les accompagnants des malades, et les participants des stages de remise en condition. Ces stages sont à encourager, mais pourvu que soit respectée la priorité due aux malades.

C'est dans cet esprit que l'échevin de Paris aux Jeux Olympiques peut devenir une opportunité pour les stations thermales : être les premières à réorienter les sports et leur image vers la santé. N'ayons pas pour cela aucun complexe d'intériorité par rapport à ce qu'on appelle le haut niveau sportif. Notre ambition n'est pas le bas niveau. Nous qui nous occupons de choses sérieuses parce que c'est nous qui avons en charge concrètement la santé du public, nous visons le haut niveau. Non pas le haut niveau de performance, mais bien le haut niveau de participation, le haut niveau de persévérance. 600 000 malades visitent nos stations chaque année, et nous sommes en mesure de faire passer le message dans l'opinion publique.

Thermalisme et pathologie traumato-orthopédique du sport

Résumé

C. VACHER, J.P. JULLIEN, J. LOVET, B. TAILLAN,
C. ARGENSON, F.A. COMMANDRE *
(Nice)

L'arsenal thérapeutique du pathologiste du sport intègre obligatoirement les méthodes rééducatives dans leur totalité et spécialement la crénotherapie ou mieux le séjour en milieu thermal de l'athlète léssé dans son appareil locomoteur.

En effet, la traumatologie ostéo-articulaire et ses séquelles bénéficie depuis l'Antiquité de l'activité des eaux (Bourbonne-les-Bains), sous Rome, n'est-elle pas la cure idéale pour le légionnaire blessé ?, sans parler des hôpitaux militaires thermaux à compter du XVIIIe siècle.

La kinésithérapie moderne a amené des méthodes essentielles qui, réalisées sous l'eau ou en eau thermale, accrissent l'efficacité thérapeutique.

Les traumatismes locomoteurs sportifs de haut niveau ou amateurs récupèrent donc plus vite et surtout protègent leur avenir au maximum. Les gains obtenus après ou sans avoir subi de chirurgie chez les athlètes, sont importants :

— amélioration de 40 p. cent environ de la durée d'immobilisation et sur les séquelles pour les traumatismes des membres supérieurs (1950, Aix-les-Bains);

Des faits similaires sont constatés sur la hanche, le tibia, les diverses articulations.

Toutes les méthodes thermales sont utilisables à côté de la kinébalnéothérapie, la fangothérapie, etc.

Surtout, le sportif découvre dans le milieu thermal, de part l'emplacement des villes thermales, une ambiance de calme et de repos en forêt ou montagne, avec cure d'oxygénation et possibilité de réentraînement à l'effort dans les multiples installations sportives des villes thermales (tennis, golf, montagne, piscine, stade, etc.).

Aussi l'athlète, sujet jeune, désirant une reprise très rapide de ses activités, le peut et son avenir n'est pas compromis.

* Consultations Externes de Médecine et Spécialités Médicales (F. Commandre), Traumatologie Orthopédie (C. Argenson), CHU Hôpital Saint-Roch, 5, rue Devouly, 06000 NICE.

Presse thermale et climatique, 1988, 125, no 5.
Session 8
Techniques oto-rhino-laryngologiques et crénothérapie stomatologique

Les moyens de défense de la muqueuse naso-sinusienne

J. TISSERANT, R. JANKOWSKI *
(Nancy)

Fosses nasales et sinus sont fréquemment le siège de processus pathologiques faisant de cette partie initiale des voies respiratoires l'objet d'une préoccupation quotidienne chez bon nombre d'entre nous. Les agresseurs sont multiples et face à cette armada doit être mis en jeu un processus de défense active organisé sous la forme de trois lignes défensives bien structurées et en étroites relations.

PREMIÈRE LIGNE DE DÉFENSE : L'ÉPITHELIEUM DE REVÊTEMENT

Les structures épithéliales constituent la première ligne de défense des muqueuses. Loin d'être un simple tapis cellulaire de revêtement, elles réalisent une entité fonctionnelle organisée.

Constitution

De type pseudostratifié cilié, l'épithélium est constitué de 4 types principaux de cellules : cellules ciliées, cellules cylindriques non ciliées, cellules caliciformes et cellules basales qui s'ordonnent en une seule assise cellulaire très cohérente fixée sur une membrane basale bien individualisée à la frontière du chorion sous-jacent.

— Les cellules ciliées représentent la majorité des cellules épithéliales. Elles possèdent une double différenciation de leur pôle apical avec présence de structures ciliées et microvillosoïdes.

— Les cellules cylindriques non ciliées ou cellules à bordure en brosse : elles ne comportent que des microvillosoïdes qui constituent des structures privilégiées d'échange et de transport ionique.

— Les cellules caliciformes : caractérisées par une importante capacité de production de glycoprotéines, ces cellules ont pour rôle la formation du mucus.

— Les cellules basales sont les moins bien différenciées et constituent une population de réserve capable de renouveler les catégories précédentes.

Action protectrice mécanique

L'analyse fonctionnelle de la première ligne de défense épithéliale relève l'interaction de deux barrières, l'une dynamique mais inactive : le système mucociliaire ; l'autre statique mais vivante : la barrière épithéliale, qui se renforcent mutuellement.

Barrière épithéliale

Elle résulte de la conjonction des propriétés de la membrane cytoplasmique, des propriétés de cohésion des cellules épithéliales et des propriétés de la membrane basale.

— La membrane cytoplasmique est avant tout une barrière qui protège la cellule du milieu extérieur. Mais, la cellule n'est pas un « tout » isolé et fermé. Il est indispensable qu'elle établisse des échanges et qu'elle communique avec son environnement, justement par l'intermédiaire de la membrane plasmique. Les échanges se font à double sens entre le mucus et le chorion ce qui explique que l'épithélium, outre son action sécrétoire, montre un pouvoir d'absorption
qui peut être très rapide pour certaines substances (eau, acides aminés). Ces nécessités de communications et d’échanges créent donc des brèches potentielles par où peuvent pénétrer des substances étrangères qui vont mettre en jeu les moyens de défense de la cellule, puis de l’organisme.

— La cohésion des cellules épithéliales est assurée avant tout par des dispositifs de jonction. Elle conditionne non seulement la cohésion de l’épithélium et donc ses propriétés mécaniques mais également la perméabilité des espaces intercellulaires.

Système mucociliaire

Ce système, particulièrement actif au niveau des fosses nasales, réalise une barrière mécano-chimique de première importance dans la défense de la muqueuse respiratoire.

— Le mucus est un gel visco-élastique. De sa composition complexe (eau, substances minérales, mucines, enzymes lytiques, interféron, acides aminés, immunoglobulines A sécrétoires), découlent un certain nombre de propriétés :

— biologiques : rôle de réservoir d’eau et de défense soit non spécifique grâce aux enzymes lytiques, soit spécifique grâce aux IgAs ;
— physiques ou rhéologiques : le mucus présente des qualités d’adhérence, d’élasticité et de cohésion lui permettant de retenir les particules solides déposées à sa surface et déplacées vers le pharynx par le mouvement ciliaire.

— Le mouvement ciliaire : la finalité des cils vibratiles est de propulser le tapis muqueux. Le mouvement ciliaire possède 3 propriétés remarquables :

— automatique ;
— polarisation : tous les cils battent dans la même direction ;
— coordination : donnant à l’observation cette image toujours reprise du champ de blé agité par le vent.

Ces propriétés permettent le déplacement de la couche de mucus. Ainsi, dans la fosse nasale, le drainage vers le pharynx, depuis le côté du cornet inférieur, s’effectue en 20 à 30 mn.

Au niveau du sinus, le drainage mucociliaire se fait dans la direction de l’ostium du sinus.

Certains facteurs influencent le mouvement ciliaire normal :

— la température : optima à 33 °C, le mouvement se ralentit au delà de 40 °C et au-dessous de 18 °C ;
— l’hygrométrie : l’influence de ce paramètre, vérifiée in vitro, n’est pas aussi importante in vivo, en raison de l’apport hydrique adapté, issu des transferts hydro-ioniques de la muqueuse ;
— les gaz inhalés : in vitro, l’anoxie entraîne une ciliostase irréversible. Mais, certaines études montrent que le mouvement ciliaire est plus sensible aux variations de la PCO2. L’inhalation de formol, chlorure, de fortes concentrations d’ozone et de gaz carbonique, la fumée de tabac et les polluants atmosphériques ont une activité cilio-statique ;
— le mucus : il doit posséder des caractéristiques qualitatives et quantitatives convenables (volume viscosité, élasticité) ;
— la pression osmotique et l’équilibre ionique : les solutions hypertoniques sont inhibitrices. Cela conduit à utiliser avec circonspection les substances médicamenteuses en instillation nasale ;
— le pH : les solutions acides inhibent le cil qui s’immobilise si le pH revient inférieur à 6.

Le bon fonctionnement du système mucociliaire est donc étroitement lié à un certain nombre de facteurs parmi lesquels les mécanismes de régulation de la production de mucus et de conditionnement de l’air inspiré sont les plus importants.

PERTURBATIONS DE LA PREMIÈRE LIGNE DE DÉFENSE

Chacun des composants de cette première ligne peut être atteint :

Barrière épithéliale

Bouleversement de la structuration épithéliale par l’apparition d’une métaplasie. Ceci s’observe essentiellement lors d’agressions répétées de la muqueuse : tabac, infection, rhinite médicamenteuse, irritants professionnels.

Perturbations de la cohésion cellulaire lors des agressions aiguës telles que :

— l’allergie qui entraînerait un arrêt des battements ciliaires ;
— l’infection aiguë, responsable d’une abrasion épithéliale.

Membrane plasmique

Elle est altérée au cours du syndrome de F. Widal. Le mécanisme pathogénique essentiel de cette affection consiste en effet en une anomalie du métabolisme des phospholipides membranaires.

Appareil mucociliaire

Une perturbation congénitale ou acquise d’au moins une des deux unités fonctionnelles de cet appareil peut conduire à une anomalie de la fonction d’épuration.

Pathologie congénitale

— Atteinte de la cellule ciliée dans le syndrome de dyskinésie ciliaire primitive où le support organique est représenté par des anomalies de l’ultrastructure du cil.
— Atteinte de la cellule glandulaire dans la mucoviscidose où s’associent un trouble fonctionnel des glandes séreuses (anomalies sudorales) et une anomalie de toutes les glandes muqueuses de l’organisme.

Pathologie acquise

— Atteinte ciliaire : de nombreuses anomalies ultrastructurales ont été décrites dans les rhinosinusites chroniques, la bronchite chronique, l’asthme, l’allergie, l’infection et chez le fumeur.
— Atteinte de la fonction mucociliaire : les facteurs en cause sont multiples : influence du climat, polluants atmosphériques, allergie, infection...

LA DEUXIÈME LIGNE DE DÉFENSE :
LA RÉACTION INFLAMMATOIRE NON SPÉCIFIQUE

Constitution

Les régions sous-épithéliales des muqueuses nasosinusien-nes intervenant dans leur défense sont habituellement dénommées « chorion ». On y observe les différents éléments cellulaires qui participent activement à la protection du tissu.
et y circulent entre les structures de soutien après y être parvenus par voie sanguine ou lymphatique. Certaines de ces cellules interviennent dans les processus de défense de la troisième ligne.

Les polynucléaires
Essentiellement neutrophiles, on les observe plus volontiers dans les tissus infectés (fonction phagocytaire). Les éosinophiles et les basophiles sont liés de façon plus systématique à des réactions à composante pathologique.

Les macrophages
Ces grandes cellules mononucléées, dérivées de monocytes issus de la moelle possèdent des propriétés multiples :
— mobilité dans l’espace ;
— mobilité membranaire facilitant le phagocytose ;
— potentiel enzymatique puissant ;
— capacité à coopérer avec les lymphocytes.

Les lymphocytes
Ce sont des éléments matures des lignées T et B. On observe également des plasmocytes, dérivant de la transformation spécifique de lymphocytes B et assurant la sécrétion d’immunoglobulines.
On connaît à présent plusieurs sous-populations effectives des lymphocytes T : T auxiliaires (coopération avec les macrophages), T supresseurs (inhibition d’une réponse immunitaire induite par les précédents), T cytotoxiques (propriétés destructives spécifiques).

Les mastocytes
Cellules rencontrées dans pratiquement tous les tissus de l’organisme et douées d’un potentiel vasomoteur important, ce sont des éléments essentiels pour le recrutement des moyens de défense.

Réaction inflammatoire non spécifique
Evénement transitoire et physiologique, par opposition à l’inflammation chronique, ce processus constitue la deuxième ligne de défense. La survenue de cette réaction se produit en plusieurs phases se succédant dans le temps :
— phase vasculaire : œdème local par modification du flux sanguin et des parois vasculaires, favorisant l’extravasation plasmatique ;
— phase cellulaire : intervention non spécifique et non immunologique des polyvalentes et des macrophages ; phagocytose de l’agent agresseur.
— phase de détoxication : nettoyage complet du site lésé par l’action phagocytaire des cellules parvenues sur place.
— phase de cicatrisation : intervention des fibroblastes qui reconstituent le tissu dans son état initial.

LES PERTURBATIONS DE LA DEUXIÈME LIGNE DE DÉFENSE
Elles sont représentées essentiellement par des affections congénitales et sont donc rarement rencontrées. Nous ne les détaillerons pas :
— la neutropénie cyclique constitutionnelle, parfois accompagnée d’un déficit de l’immunité humorale et cellulaire ;
— les anomalies du chimiotactisme ;
— la granulomatose septique chronique de l’enfance.

LA TROISIÈME LIGNE DE DÉFENSE : L’ADAPTATION IMMUNITAIRE

Constitution
La constitution de cette troisième ligne a déjà été envisagée : il s’agit d’un système cellulaire constitué des différentes lignées lymphocytaires.

Adaptation immunitaire
Par tradition, on oppose l’immunité humorale, médiane par les lymphocytes B et les anticorps qu’ils peuvent produire, à l’immunité cellulaire médiane par les lymphocytes T et leurs lymphokines.

L’immunité humorale
Les anticorps interviennent au niveau des muqueuses comme un moyen de défense spécifique très important. Leur spécificité leur permet de se fixer sur les sites antigéniques des immunogènes qui ont induit leur formation et de ralentir ou d’empêcher la pénétration de ces derniers dans le milieu intérieur.

Les immunoglobulines des sécrétions
On trouve surtout des IgA dites IgA sécrétoires, constituées de deux monomères d’IgA reliées par une pièce J dite pièce sécrétoire. A côté de celles-ci, sont présentés des immunoglobulines d’origine interstitielle, qui suffisent à travers les cellules épithéliales (essentiellement des IgG et des IgA monomères). La production des immunoglobulines est assurée par les plasmocytes.

La spécificité des immunoglobulines des liquides de sécrétion
Les anticorps destinés à la protection des muqueuses respiratoires sont surtout dirigés contre des agents bactériens et viraux. Leur intervention se fait :
— en neutralisant les antigènes porteurs de sites antigéniques dont ils sont spécifiques : la fixation d’anticorps sur ces structures favorise leur phagocytose ou leur destruction par l’intermédiaire du système du complément ;
— en diminuant l’adhésivité des germes à la surface des cellules épithéliales.

L’immunité cellulaire
L’acception actuelle du terme d’« immunité cellulaire » englobe en fait tous les mécanismes physiologiques de la réponse immunitaire, spécifique et non spécifique. C’est ainsi qu’interviennent :
— Les macrophages et autres phagocytes : transmission de l’information antigénique sous une forme reconnaissable par les cellules immunitaires ; régulation des fonctions lymphocytaires.
— Les lymphocytes T : plusieurs mécanismes sont intriqués : réception de l’information antigénique transmise par les phagocytes ; prolifération mononucléée de lymphocytes T effecteurs et mémoires ; relais de l’information antigénique à des lymphocytes B spécifiques ; régulation de la réponse immunitaire T, B et macrophagique.
— Les lymphocytes B : ils répondent à la stimulation antigénique ou aux stimulations mitogènes par une prolifération mononucléée spécifique ou par une prolifération polyclonale. Les immunoglobulines produites interviennent ensuite en tant qu’effecteurs de la réponse immunitaire pour éliminer l’antigène ou en tant que régulateurs pour moduler l’activité des lymphocytes B et T.
Ces quelques éléments de physiologie immunitaire montrent la complexité des inter-relations existant entre les divers acteurs de l'immunité. On comprend ainsi la diversité des atteintes pathologiques de ce système.

PERTURBATIONS DE L'ADAPTATION IMMUNITAIRE

Elles sont essentiellement représentées par les déficits immunitaires et les syndromes d'hypersensibilité.

Les déficits immunitaires

Les déficits immunitaires primifs sont rares.

Les déficits acquis ou secondaires peuvent revêtir des étiologies variées :
- iatrogènes (thérapeutiques antitumorales, corticothérapie, ...);
- infectieuses (grippe, rougeole, herpès, SIDA, ...);
- systémiques (malnutritions, brûlures, ...).

Les syndromes d'hypersensibilité

Ils ne peuvent être envisagés ici dans le détail. Nous devons le plus souvent faire face au problème de l'allergie de type I ou hypersensibilité immédiate, mettant en jeu les polynucléaires basophiles et les mastocytes. Ces cellules, possédant des sites récepteurs pour les IgE, libèrent des médiateurs préformés en cas d'allergène par les allergènes (histamine, sérotinine, hémorine, slow reacting substance of anaphylaxis, leucotriènes, ...).

Les autres mécanismes de l'hypersensibilité :
- type II ou cytotoxicité à médiation humorale ;
- type III ou hypersensibilité semi-retardée à complexes immuns ;
- type IV ou hypersensibilité retardée ;

font intervenir des réactions complexes mettant en jeu d'autres classes d'immunoglobulines et d'autres effecteurs cellulaires.

CONCLUSION

Dans nombre d'affections naso-sinusienes, il apparaît manifestement que l'abord purement ORL n'est pas suffisant et que la démarche immuno-allergologique s'impose.

Les indications thérapeutiques de la crénotherapy sont très diversifiées et elles s'adressent à de multiples aspects de l'organisation des moyens de défense de la muqueuse naso-sinusienne. Il est donc certain que l'on ne peut plus faire l'économie d'un effort intellectuel dans la compréhension des mécanismes mis en jeu, tant est grande leur complexité.

Système nerveux végétatif et muqueuse pituitaire
Aspects physiologiques et physiopathologiques

Pr. PERRIN *, P. GAZEL †

(Nancy)

Les fonctions vasomotrice et sécrétoire, intimement liées à l'innervation végétative, sont les éléments primordiaux de la respiration nasale, de l'épuration et du conditionnement (réchauffement - humidification) de l'air inspiré (fig. 1).

ORGANISATION DU SYSTÈME NERVEUX VÉGÉTATIF (SNV)

Chaque voie sympathique comprend un neurone pré-ganglionnaire, un neurone post-ganglionnaire et un ganglion périphérique, structure de relais entre ces neurones (fig. 2).

Pour le système ortho-sympathique, le ganglion végétatif est situé loin de l'effecteur et près de l'axe rachidien.

Pour le système para-sympathique, le premier neurone est relativement plus long que le deuxième neurone avec un ganglion relais au voisinage du viscère concerné.

L'acétylcholine est le transmetteur de toutes les fibres pré-ganglionnaires du SNV, et des fibres post-ganglionnaires para-sympathiques. Quelques terminaisons post-ganglionnaires ortho-sympathiques sécrètent aussi de l'acétylcholine, mais la majorité de ces terminaisons sécrètent de la noradrénaline et sont donc dites adrénergiques.

Les récepteurs adrénergiques sont de type alpha ou bêta.

La noradrénaline excite surtout les récepteurs alpha, mais aussi faiblement les récepteurs bêta. L'adrénaline excite les deux types de récepteurs de façon environ équivalente.

ORGANISATION DU SNV DE LA MUQUEUSE NASALE

L'innervation végétative des cavités nasales est abondante (fig. 3).

Système sympathique

Les fibres sympathiques pré-ganglionnaires à destination nasale proviennent des cornes antérieures de la moelle entre C8 et D2, cheminent par les rami communicants et se terminent dans le ganglion cervical supérieur. Les fibres

* Assistant des Universités, Assistant des Hôpitaux, Laboratoire de Physiologie, Faculté de Médecine, B.P. 194, 54006 VANDOEUVRE GEDEX.

Système para-sympathique

Les fibres pré-ganglionnaires proviennent du noyau lacrymo-muco-nasal (plancher du IVe ventricule), cheminent dans le nerf facial, le grand nerf pétreux superficial (nerf grand pétreux), le nerf vidien et se terminent dans le ganglion sphéno-palatin. Les fibres post-ganglionnaires se mêlent aux filets nasaux du V.

Les filets nerveux du SNV sont donc essentiellement véhiculés par les branches nasales du nerf maxillaire.

EFFECTEURS

Structure de la muqueuse nasale

On distingue un épithélium pseudo-stratifié cilié, composé de cellules ciliées, de cellules cylindriques non ciliées, de cellules caliciformes et de cellules basales. Ces cellules sont toutes en relation avec la membrane basale qui les sépare du chorion. Au sein de sa substance fondamentale, on distingue schématiquement une zone lymphoïde, une zone glandulaire, et une zone vasculaire.

On met en évidence trois types glandulaires : les glandes muqueuses, séreuses et mixtes, séro-muqueuses.

Les vaisseaux de la muqueuse nasale présentent des éléments particuliers. Des dispositifs de blocs, qui sont des épaissements de la paroi vasculaire, sont développés essentiellement au niveau artériel, mais aussi dans les veines, et permettent un contrôle du débit sanguin. Un tissu caverneux, zone érectile, se trouve dans les parois veineuses essentiellement des cornets.

Sur le plan fonctionnel, on divise habituellement cette vascularisation en trois compartiments :

- les artères et les artérioles contrôlent le flux sanguin destiné au réseau sous-épithéial et péri-glandulaire ;
- les réseaux capillaires où s’opèrent les échanges entre le sang et le liquide interstitiel avec un niveau capillaire superficiel particulièrement dense, assurant également le conditionnement thermique de l’air inspiré ;
- le tissu caverneux dont le degré de remplissage détermine le volume de la muqueuse, et par conséquent la perméabilité de la fosse nasale.

Effets intéressants

Les vaisseaux

Les glandes

L’innervation serait uniquement para-sympathique, mais des études auraient montré l’existence d’une discrète innervation noradrénergique autour des acini.

Les neurotransmetteurs agissent au niveau de la cellule glandulaire séreuse ou muqueuse.

Presse thermale et climatique, 1988, 125, n° 5.
ROLE DU SNV

Rôle du système ortho-sympathique

Le système ortho-sympathique a un effet vasoconstricteur dû à la stimulation essentiellement des récepteurs alpha par la noradrénaline.

Les glandes seraient donc dépouvrues d’innervation ortho-sympathique. Mais ce système peut avoir un rôle dans la sécrétion par l’intermédiaire de la vascularisation des glandes.

Rôle du système para-sympathique

La stimulation para-sympathique provoque une augmentation de la fonction sécrétoire glandulaire et une obstruction nasale en rapport avec une vasodilatation.

Donc la stimulation du para-sympathique entraîne à la fois une réponse sécrétoire et une réponse vaso-dilatatrice.

La réponse sécrétoire est due à l’activation de récepteurs cholinergiques, la réponse vasomotrice pour partie à d’autres mécanismes.

Fibres peptidiques

L’effet vaso-dilatateur pourrait être expliqué par un phénomène supplémentaire, faisant intervenir des polyptides :

— La substance P a une puissante action vaso-dilatatrice. Ce polypeptide a été mis en évidence par Von Euler et Gaddum en tant que neuro-transmetteur de la voie sensitive.

Cycle nasal

Le calibre des vaisseaux de la muqueuse nasale est le résultat d’un antagonisme entre un tonus vasoconstricteur, dépendant des récepteurs alpha adrénergiques et d’un tonus vaso-dilatateur dépendant des récepteurs cholinergiques et peut-être de récepteurs peptidiques. La vasomotricité de la muqueuse présente des variations spontanées et évoluant de manière opposée dans les deux fosses nasales, selon un cycle physiologique (Kayser) en rapport avec la variation de la prépondérance du tonus ortho et para-sympathique (fig. 4).

La muqueuse d’une fosse nasale étant en état de turgescence par vasodilatation avec augmentation de la résistance, la muqueuse de l’autre fosse nasale est en état de rétraction par vasoconstriction avec diminution de la résistance. La situation inverse est observée au cours de la période suivante, la résistance totale des deux fosses nasales restant constante.

A ce cycle vasomoteur se superpose un cycle sécrétoire (Lillie). Une libération des sécrétions nasales accompagne la rétraction muqueuse et une diminution de la sécrétion coïncide avec la phase de congestion.

Ces variations alternatives de tonus sympathique et para-sympathique sont sous contrôle hypothalamique (Écules).

De nombreux facteurs peuvent modifier le cycle nasal : la position du corps, l’exercice physique, la pression veineuse, l’imprégnaion hormonale (tableau I).

Interactions des systèmes ortho et para-sympathiques

C’est le système ortho-sympathique qui semble exercer un tonus permanent sur les vaisseaux de la muqueuse nasale. L’action des systèmes ortho et para-sympathiques selon une modalité d’organisation réciproque, doit être complétée par un fonctionnement de type « on - off », synergique voire coopératif.

TABLEAU 1. — Facteurs de la vasomotricité nasale.

<table>
<thead>
<tr>
<th>Nature des facteurs</th>
<th>Vasodilatation</th>
<th>Vasoconstriction</th>
</tr>
</thead>
<tbody>
<tr>
<td>Nerveux</td>
<td>Stimulation du parasymphathique</td>
<td>Stimulation du sympathique : action sur les récepteurs alpha</td>
</tr>
<tr>
<td>Pharmacologiques</td>
<td>Sympathicomimétique : Acétyl-choline</td>
<td>noradrénaline : râgiletine</td>
</tr>
<tr>
<td></td>
<td>Ephédrine</td>
<td>Sympathomimétique : xérolpine</td>
</tr>
<tr>
<td></td>
<td>Naphazoline</td>
<td>Acide nicotinique</td>
</tr>
<tr>
<td></td>
<td>Pernazaine</td>
<td>Anticholinestérase : édérine</td>
</tr>
<tr>
<td>Hormonaux</td>
<td>Prostaglandines E</td>
<td>Histamine</td>
</tr>
<tr>
<td></td>
<td>Prostaglandines F</td>
<td>Klinines, bradyklinine</td>
</tr>
<tr>
<td>Ioniques</td>
<td>Ca**</td>
<td>Mg**</td>
</tr>
<tr>
<td>Physiques</td>
<td>Air chaud</td>
<td>Air froid</td>
</tr>
</tbody>
</table>

Presse thermale et climatique, 1988, 125, n° 5.
ACTION NASALE DE L'HISTAMINE

Les travaux de Melon montrent que l’administration intranasale d’une solution d’histamine à 1 p. cent provoque l’apparition d’un prurit local, à l’origine d’une hypersécrétion muqueuse et d’une vasodilatation. Cette action semble due à l’action directe de l’amine sur les récepteurs, et non d’origine cholinergique.

DÉTERMINISME DES FONCTIONS VASOMOTRICE ET SÉCRÉTOIRE

Les fonctions vasomotrice et sécrétoire conditionnent la physiologie nasale (fig. 5).

Le cycle vasomoteur est un des éléments de la résistance nasale, donc de la fonction respiratoire.

D’un côté, la vasodilatation, essentiellement par la congestion du tissu caverneux, accroît les échanges thermiques entre air et muqueuse en ralentissant le flux aérien et ainsi réchauffe l’air inspiré. Son humidification se fait par évaporation de l’eau de la couche de mucus, au niveau de l’autre cavité nasale. Le réchauffement et l’humidification assurent le conditionnement de l’air.

Le mucus nasal constitue en outre la première barrière du filtre nasal à la pénétration des particules inhalées.

ENQUÊTE VASOMOTRICE

Nous voudrions insister sur les tests cutanés et l’exploration de la réactivité nasale.

Le but est d’explorer une rhinite allergique, d’autre part d’établir le type de la rhinite vasomotrice.

L’entité clinique caractérisée par le trépied fonctionnel, éternuement, rhinorrhée, obstruction nasale, ne permet pas d’individualiser des entités.

Dans la rhinite vasomotrice, il n’y a pas d’IgE spécifique.

Tests cutanés

Moneret-Vautrin, Grilliat, Wayoff, Gazel étudient l’effet de quatre substances :

— la papavérine (dilatant directement les fibres musculaires lisses) ;
— l’acétylcholine (para-sympathico-mimétique vasodilatateur) ;
— l’histamine (vasodilatatrice) ;
— le composé 48-80 (agent histamino-libérateur) ;

L’anomalie des réactivités aux substances testées permet d’individualiser trois types pathogéniques de rhinites vasomotrices : angiospastique ou sympathicotonique, cholinergique et histaminique.

Tests de provocation par voie nasale

Ces tests reposent sur le principe de la rhinomanométrie. On détermine la résistance nasale en mesurant la baisse de pression dans le trajet narinaire en fonction du débit lors de la respiration.

Intervention d’un facteur psychogène

La spaspholie semble être un terrain prédisposant des rhinites vasomotrices.

Il convient en outre d’éliminer l’existence d’une rhinite iatrogène médicamenteuse et de connaître l’éventualité de rhinites mixtes, associant troubles vasomoteurs et facteur allergique.

PERSPECTIVES THÉRAPEUTIQUES

En fonction des différents types cliniques individualisés, des thérapeutiques peuvent être proposées.

Traitement médical

— voie générale : DHE, antihistaminiques, alpha-bloquants, désipramine ;
— voie locale : para-sympatholytique local, cremoglycate disodique ;
— terrain spaspholique : benzodiazépines, magnésium, bêta-bloquants, alcaloïdes de la belladone associés à l’ergotamine.

Traitement chirurgical

La neurotomie viddienne, bien que séduisante a priori, car reposant sur des bases physiopathogéniques expérimentales,
Le dossier médical ORL informatisé en pratique thermale

J. MAGNAN, Tr. de BAILLIENCOURT, D. ESTEVE,
J. JUDA, J.P. MARTIN, R. BARTOLIN, C. DELBOY *

(Gréoux-les-Bains)

Le Service Universitaire d’hydroclimatologie médicale du Professeur Delboy m’a demandé de participer à l’élaboration d’un dossier médical informatisé de pathologie respiratoire : ORL et Pneumologie.

Cette méthodologie a pour but de permettre une évaluation plus objective des effets du thermalisme sur les affections des voies aériennes.

Cette première finalité est déjà en elle même un progrès.

Cela devrait avoir plusieurs conséquences pour les médecins thermalistes ORL :

— tout d’abord de colliger leur dossier de façon moderne et de pouvoir avoir une meilleure appréciation des effets de la thérapeutique thermale sur leurs patients.

— Surtout de présenter les résultats avec des dossiers cliniques aussi rigoureux que possible comme cela se pratique dans toutes les spécialités médicales.

— Enfin de promouvoir le thermalisme auprès de leurs confrères ORL et auprès des pouvoirs publics par des études à long terme.

Un fichier informatisé doit être aussi complet que possible pour répondre à toutes les situations. Mais l’astreinte que représente la gestion d’un tel dossier doit être réduite pour ne pas rebuter le médecin utilisateur. C’est pourquoi nous avons divisé notre dossier en deux grandes parties distinctes (Fig. 1 et 2).
Le fichier de base est commun à tout dossier de pathologie respiratoire. Il est donc à remplir systématiquement pour chaque nouveau patient.

Les fiches satellites ont été réalisées sur le même modèle pour permettre une rapide habilitation et diminuer toute hésitation et perte de temps.

Une seule fiche satellite est à remplir à chaque cure en fonction du motif de la cure. Les intrications pathologiques de la sphère respiratoire sont ainsi éliminées pour ne garder que des groupes homogènes et statistiquement valables.

LE FICHIER DE BASE

La fiche de base (fiche no 1) de reconnaissance du dossier répond aux exigences d’anonymat de la loi « informatique et liberté »

L’opératrice du centre des données inscrit un numéro code au dossier (numéro indépendant au patient, au médecin et à la station thermale) et un numéro code lié à la station thermale.

Le médecin thermaliste possède un numéro code personnel connu de lui seul de telle sorte qu’aucun médecin ne puisse utiliser les dossiers médicaux d’un autre confreire sans son accord.

Le médecin thermaliste remplit le numéro code du patient. Numéro qui n’est connu que du médecin et non par le centre des données, de telle sorte que l’anonymat du patient soit respecté. Autrement dit, le médecin thermaliste est le seul à pouvoir retrouver le nom de son client, car il est le seul à en connaître le numéro code.

FICHE SATELLITES

1. POSSIBLES NASALE & SINUS
2. ORILLES
3. OROPHARINX
4. LARYNX
5. POUmons & BRONCHES

Ainsi le système isole, le centre des données, le médecin thermaliste et le patient.

Une étude épidémiologique et les antécédents du patient complètent la fiche de base

Cela permet de gérer :
-
- le lieu de résidence,
- la profession,
- le nombre de cures pour la même maladie,
- les raisons de la cure,
- le choix de la station,
- les antécédents familiaux et personnels,

et ainsi de déterminer « la personnalité » du curiste.

Le questionnaire individuel

L’accord du patient est nécessaire, sinon le dossier informatisé n’est pas rempli.

Le patient participe à l’élaboration de son propre dossier.

Il fournit ainsi les renseignements sur sa profession, son habitat, ses conditions de travail (la scolarité pour les enfants et ses doléances fonctionnelles actuelles.

L’évolution de la maladie est remplie par le médecin.

Elle permet de définir les motifs de la cure actuelle (fiche no 2) et l’évolution de la maladie à son début et depuis la dernière cure.

FICHE SATELLITE 2: ÉVOLUTION DE LA MALADIE

MOTIFS DE LA CURE ACTUELLE

- rhinite périodique (allergique) ou Aperiodique
- rhinite vaso-matrice
- rhinite médicamenteuse
- rhino-sinusite chronique
- polyposse nasale
- pharyngite ou mygdalite chronique (adulte)
- parésthéasies pharyngées
- rhino-pharyngite récidivante (enfant)
- otite chronique
- otite aiguë à répétition
- otite séro-muqueuse à tympan fermé
- cataracte et dysfonctionnement du tube
- séquelles d’otite chronique

Fiche no 1. Fiche no 2.

Presse thermale et climatique, 1988, 125, no 5.
Fiche satellète 3 : Fiche de soins thermaux.

Chainage : Date de la cure en cours

<table>
<thead>
<tr>
<th>Mois</th>
<th>269</th>
</tr>
</thead>
<tbody>
<tr>
<td>Année</td>
<td>270</td>
</tr>
</tbody>
</table>

Technique de cure

<table>
<thead>
<tr>
<th>Nombre de séances prescrites</th>
<th>Nombre de séances effectuées</th>
<th>Tolerance code N°</th>
</tr>
</thead>
<tbody>
<tr>
<td>GARGARISMEs</td>
<td>1 1</td>
<td>271</td>
</tr>
<tr>
<td>IRRIGATIONS NASALES</td>
<td>1 1</td>
<td>274</td>
</tr>
<tr>
<td>HUMAges nebulisations nasale</td>
<td>1 1</td>
<td>277</td>
</tr>
<tr>
<td>pharynges</td>
<td>1 1</td>
<td>280</td>
</tr>
<tr>
<td>AEROSOLS SONIQUES nasale</td>
<td>1 1</td>
<td>283</td>
</tr>
<tr>
<td>pharynges</td>
<td>1 1</td>
<td>286</td>
</tr>
<tr>
<td>Radiovaporisation</td>
<td>1 1</td>
<td>289</td>
</tr>
<tr>
<td>PELOLITE</td>
<td>1 1</td>
<td>292</td>
</tr>
<tr>
<td>Douches penetrantes</td>
<td>1 1</td>
<td>295</td>
</tr>
<tr>
<td>Reeducation respiratoire</td>
<td>1 1</td>
<td>298</td>
</tr>
<tr>
<td>Douche pharyngée</td>
<td>1 1</td>
<td>300</td>
</tr>
<tr>
<td>Insufflation tubaire</td>
<td>1 1</td>
<td>303</td>
</tr>
<tr>
<td>Projetz</td>
<td>1 1</td>
<td>306</td>
</tr>
</tbody>
</table>

Conclusions

- rhinite vesomotrice
- rhinite hypertrophique
- rhinite muco-purulente
- rhinite atrophique
- sinusite frontale GAUCHE bilatérale
- sinusite maxillaire DROITE GAUCHE bilatérale
- pansinusite
- polyposis nasal-sinusienne

Circumstances étiologiques

- infection
- allergie
- étiologie médicamenteuse
- étiologie vasomotrice
- sucoviscose
- maladie de WIDAL
- syndrome de MOURIER-KIDAIN
- syndrome d'immobilité ciliare
- dystonie neuro-végétative

Fiche n° 4.

Fiche des soins thermaux (fiche n° 3)

Sur celle-ci figure l'index signalétique de toutes les techniques de cure thermales en ORL, avec la prescription de départ, la prescription effectuée et la tolérance.

Elle est capitale pour permettre l'évaluation objective de l'effet thérapeutique du protocole de soin utilisé.

La fiche satellète

Elle focalise l'information sur l'organe malade (fosses nasales et sinus, oreilles, oropharynx, larynx) en début et en fin de cure.

Elle permet l'étude de l'évolution de la symptomatologie clinique, fonctionnelle et physique, ainsi que la conclusion du dossier médical.

Les conclusions (fiches n°4 et 5)

Elles sont bien sûr importantes par elles-mêmes, mais aussi parce qu'elles font références à un vocabulaire médical précis, connu et reconnu.

Les terminologies imprécises ou discutables ainsi que les classifications trop personnelles ont été rejetées.

Les conclusions ainsi rédigées, associées aux facteurs étiologiques permettent de rassembler des groupes de malades homogènes sans utiliser trop de variables.

Fiche n° 5.
D- APPRECIATION IMMEDIATE DE LA CURE (Médecin Thermaliste et Malade)

1 - EFFICACITE

- ETAT FONCTIONNEL ORL : (code N°) 1 : amélioré 1 1
 2 : stable 1
 3 : aggravé 1 1

- SIGNES PHYSIQUES ORL : (code N°) 1 : améliorés 1
 2 : stables 1
 3 : aggravés 1 1

- CONSOMMATION MEDICAMENTEUSE pour cette maladie, pendant la cure
 (code N°) 1 : nulle 1
 2 : diminuée 1
 3 : stable 1
 4 : augmentée 1 1

2 - TOLERANCE

- crise thermale au 1 1 1 libre jour de cure 1 1

- autres incidents de cure :
 1. récurrence des signes fonctionnels 1
 2. poussée inflammatoire ORL locale 1
 3. poussée inflammatoire pulmonaire 1
 4. poussée d'HTA 1
 5. troubles neuro-végétatifs 1
 6. autres incidents 1

- modification de la prescription thermale initiale 1

3 - APPRECIATION GLOBALE SUR LA CURE

- amélioration 1
 (code N°)
- PAS d'effet 1
- aggravation 1

Fiche n° 6.

L'appréciation immédiate de la cure (fiche n° 6)

Elle est évaluée en fin de cure par le médecin et son patient.

Cette évaluation globale de l'efficacité de la cure complète l'étude de l'évolution de la symptomatologie au cours de la cure.

Elle permet d'insister sur la tolérance ou les incidents en cours de cure.

2 - FICHE DE POST-CURE

(fiche de liaison à remplir par le Médecin Traitant)

- vers la 4 ème mois après la fin de la cure, pour les adultes

- après la fin du 1er trimestre d'école, pour les enfants

B- DEPUIS CETTE DERNIERE CURE.

- ETAT FONCTIONNEL ORL : (code N°) 1 : amélioré 1
 2 : inchangé 1
 3 : aggravé 1

- SIGNES PHYSIQUES ORL : (code N°) 1 : améliorés 1
 2 : inchangés 1
 3 : aggravés 1

- CONSOMMATION MEDICAMENTEUSE pour cette même maladie :

 (code N°) 1 : nulle 1
 2 : diminuée 1
 3 : inchangée 1
 4 : augmentée 1

- ABSENCEISME PROFESSIONNEL lié à la maladie chez les curistes qui habituellement travaillent :

 DU SCOLAIRE (code N°) 1 : nul 1
 2 : diminué 1
 3 : inchangé 1
 4 : augmenté 1

Fiche n° 7.

La fiche de post-cure (fiche n° 7)

C'est la fiche de liaison adressée en fin de cure au médecin traitant et à remplir par celui-ci un trimestre ou moins après la cure.

Elle permet une étude à distance, impartiale, par un autre confrère des résultats de la cure selon les mêmes critères que lors de l'évaluation immédiate.

Ce dossier médical informatisé doit être mis en pratique par les médecins ORL de la station thermale de Gréoux.

Il nous paraît indispensable que les médecins thermaux s'obligent à des bilans cliniques précis et à des évaluations thérapeutiques plus objectives. L'utilisation d'un dossier médical informatisé répond à cet objectif. La possibilité de publier des résultats dans les réunions scientifiques non seulement du thermalisme mais aussi de leur propre spécialité, permettra aux médecins thermalistes d'augmenter leur crédibilité vis-à-vis de leurs confrères.
Résultats précoces des insufflations tubaires après une cure thermale à Gréoux-les-Bains

D. ESTEVE, Tr. de BAILLIENCOURT

(Gréoux-les-Bains)

L'étude que nous allons rapporter a été entreprise à la station thermale de Gréoux-les-Bains.

Le but de cette étude est d'apprécier selon des critères objectifs les résultats précoces des insufflations tubaires, pratiquées au cours d'une cure thermale, suivie des patients présentant une pathologie d'oreille moyenne justifiant ces insufflations.

Les indications retenues sont l'otite séro-muqueuse chez l'enfant et l'adulte, le dysfonctionnement tubaire isolé récidivant (ou catarrhe tubaire) de l'adulte et quelques cas d'atélectasies tympaniques, toute pathologie entraînant un trouble de la mobilité de la membrane tympanique.

Nous ne reviendrons pas lors de cet exposé sur les problèmes de physiopathologie propres à chacune de ces affections. Nous allons vous présenter successivement les critères de sélection des dossiers retenus, les techniques employées, les moyens d'appréciation des résultats et enfin les résultats eux-mêmes.

Nous voulons insister dès ce préambule sur le fait que ce travail a été réalisé au cours d'une saison thermale, et qu'il n'étudie l'évolution des patients que sur une période de 21 jours.

D'autre part, nous avons volontairement fait abstraction du traitement thermal global suivi par nos patients, celui-ci étant le même pour chacun d'eux.

Enfin, nous insistons sur le fait qu'il s'agit d'une étude des résultats précoces, les résultats à long terme pourront faire éventuellement l'objet d'un travail ultérieur.

Parmi tous nos patients présentant la pathologie étudiée, nous avons exclu d'emblée :

— tous ceux qui avaient déjà effectué une cure thermale,

— tous ceux chez lesquels avaient déjà été pratiquées des IT,

— les porteurs d'ârateurs trans tympaniques ou de perforations des tymans (ce qui rend impossible la pratique de la tympanométrie),

— les antécédents de tympanoplasties depuis moins d'un an,

— enfin les patients présentant en fin de cure une réaction thermale pouvant fausser les résultats.

* Etablissement Thermal, Galerie médicale, 04000 GREOUX-LES-BAINS.

TECHNIQUES EMPLOYÉES

D'un point de vue pratique, nous utilisons pour effectuer les insufflations :

— soit la sonde d'Ilard, qui selon la technique connue est introduite par l'orifice narinaire et permet d'insuffler directement la cavité tubo-tympanique homolatérale,

— soit une technique dérivée de la méthode de Politzer utilisant un embout olivaire placé dans le vestibule narinaire, l'autre narine étant obturée par pincement ; on demande alors au patient d'avaler une gorgée d'eau, ce qui amène le passage du gaz dans les cavités tubo-tympaniques.

Nous utilisons plus volontiers la Sonde d'Ilard chez l'adulte et les embouts oliviaires chez l'enfant.

Quelque soit la technique employée le passage du gaz thermal est systématiquement contrôlé par l'usage d'un stéthoscope biauriculaire. Le gaz insufflé est obtenu par le barbotage d'air sous pression à travers une colonne d'eau thermale, selon un procédé classique.

APPRÉCIATION DES RÉSULTATS

Nous avons volontairement fait abstraction des données cliniques d'interrogatoire et d'examen recueillies en début et en fin de traitement, pour ne retenir que le moyen qui nous a permis à la fois d'objectiver le diagnostic et surtout de contrôler les résultats des insufflations tubaires, à savoir la tympanométrie.

Nous avons utilisé un tympanomètre automatique diffusé assez largement et dont la fiabilité est établie, de la marque American, de type 85 AR II.

Cet appareil est particulièrement maniable, il permet d'effectuer une tympanométrie de façon automatique dans un temps très court, environ 5 secondes par oreille, ce qui le rend utilisable très facilement et en particulier chez l'enfant.

La réalisation pratique de l'examen est simple, il suffit, après l'examen otoscopique, de placer la sonde de l'appareil à l'orifice du CAE, le patient étant en position assise, respirant normalement.

Le résultat est une courbe dont nous allons vous présenter les caractéristiques.

Le tympanogramme normal a la forme d'un triangle dont le sommet est centré sur la pression nulle, et dont les angles correspondent aux pressions extrêmes de et de 200 mm H₂O.
La mesure des caractéristiques dimensionnelles des aérosols d'eau thermale

J.C. GUICHARD *, P. DRUTEL **

(Verneuil-en-Halatte, La Bourboule)

Dans des stations thermales telles que La Bourboule, Cauterets ou le Mont-Dore, l'aérosolthérapie tient une place éminente. Les curistes sont exposés aux aérosols soit à des postes individuels, soit dans des salles d'inhalation collective. C'est alors une attitude de simple bon sens que de chercher à faire en sorte que tous les appareils d'une même catégorie délivrent des aérosols identiques et que les différentes salles d'inhalation soient remplies du même brouillard, identique à lui-même au cours du temps. Dans cet état idéal de la station, la dose fixée dans le curiste ne dépend plus de l'appareil ou du numéro de la salle qui lui est affectée et on peut, en adoptant un cycle respiratoire standard, calculer des doses moyennes ; ce qui constitue un renseignement précieux lorsque l'on cherche à optimiser telle ou telle installation en améliorant la distribution granulométrique et la concentration de l'aérosol [2].

Cette maîtrise des moyens de la station repose sur la connaissance quantitative des différents aérosols. Les méthodes de mesure de leur distribution granulométrique jouent donc un rôle essentiel.
Ce n'est que depuis une quinzaine d'années que l'on dispose du matériel nécessaire pour traiter la plupart des cas. Cela ne veut pas dire que l'on n'ait rien fait aupara-
vant. En effet des observations empiriques ont souvent per-
mis d'arriver à une situation que les moyens modernes de
mesure permettent de décrire comme satisfaisante.

Notre expérience pratique, issue des travaux menés à la
station thermale de La Bourboule, nous permet de donner
ci-dessous une description de méthodes qui ont fait leurs
preuves.

APPAREILS DE MESURE

Les aérosols qui sont inhalés par le curiste sont de trois
types différents :

- aérosols de noyaux solides constitués du résidu sec
de l'eau thermale (électroaérosols) ;
- gouttelettes d'eau thermale à l'équilibre (salles d'in-
halation) ;
- gouttelettes d'eau en cours d'évaporation (cas général
de la sortie des pulvérisateurs pneumatiques).

Pour ces dernières la mesure est très délicate et nous préférons,
dans tous les cas, avoir recours à des méthodes indirectes pour connaître leur distribution granulométrique
et leur concentration. Pour les deux autres types d'aérosols,
on utilise soit un compteur optique de particules, soit un
compteur à « scintillation » de Sartorius. Nous allons décrire
brûvement ces deux appareils.

Le compteur à « scintillation » de Sartorius a été inventé
par Binek [11]. Son principe est plus facile à comprendre
dans le cas simple où l'aérosol qu'on lui envoie est constitué
de particules de chlorure de sodium.

Les particules de NaCl sont injectées une par une dans
une flamme plate du type hydrogène-oxygène. Elles brûlent
en émettant le spectre de raies du sodium. Un filtre inter-
férentiel, placé à 90° de l'axe de la flamme permet d'isoler
la raie jaune du sodium. Le photomultiplicateur placé
derrière ce filtre voit le passage des particules sous forme
de éclairs lumineux qu'il transforme en impulsions élec-
triques proportionnelles à la masse de sodium contenue dans
la particule correspondante. L'électronique multicanale de
l'appareil permet de classer les impulsions en 30 niveaux
granulométriques depuis 0,03 µm (en diamètre). Le débit
d'aspiration du compteur est de 200 cm³/minute mais il
ne peut compter convenablement que des aérosols dont la
concentration numérique ne dépasse pas quelques dizaines
de particules/cm³.

Une application importante est l'étude des pulvérisa-
deurs d'eau lorsque l'on veut connaître leurs distributions granu-
lométriques initiales. Au lieu d'opérer avec de l'eau pure,
on utilise une solution saline de titre connu. Après séchage
des gouttelettes, on retrouve le résidu salin de chacune
d'entre elles sous la forme d'un noyau sec dont le compteur
mesure le diamètre équivalent en masse. On voit facilement
que le diamètre de la gouttelette initiale s'en déduit par
la relation :

\[
D = d \sqrt[3]{\frac{\rho}{\rho_s - C}}
\]

où :
- \(\rho\) est la masse spécifique du chlorure de sodium
 \((\approx 2,165 \text{ g/cm}^3)\);
- \(\rho_s\) la masse spécifique de la solution ;
- \(c\) la concentration pondéralement en sel ;
- \(d\) le diamètre du noyau mesuré par le compteur.

Ainsi si la solution est à 10 p. cent en poids \((C=0,1\text{ et }\rho_s=1,07 \text{ g/cm}^3)\) on obtient :

\[
D = 2,73 \ d
\]

On voit alors que la mesure des gouttelettes sera possible
à partir de 0,082 µm \((d = 0,03 \mu m)\).

Une autre application qui découle de la précédente con-
cerne le cas où on utilise de l'eau thermale. Si elle est
suffisamment riche en sodium, le compteur mesure sélec-
tivement le contenu en ce corps dans chaque particule
(noyaux secs ou même gouttelettes en cours d'évaporation).
Si on connaît le titre partiel en sodium de l'eau thermale,
on en déduit le diamètre des gouttelettes à leur naissance.
Ainsi, avec l'eau Bourboulienne, \(C = 1,9 \text{ g/litre}\) et
\[D = 8,02 \ \mu m\] : ou \(d_{x}\) est le diamètre de la sphère de sodium
pure dont le poids est celui du sodium contenu dans la
particule (le compteur donne directement \(d_{x}\)). Mais si
on a affaire à des noyaux secs, après mesure de leur \(d_{x}\),
on peut déduire la valeur de leur diamètre géométrique
(en les assimilant à des sphères compactes) si on connaît
la masse spécifique du résidu sec et sa concentration pon-
déralement dans l'eau de départ. Toujours dans le cas de l'eau
Bourboulienne on arrive à \(d_{x} = 1,1 \ \mu m\) (titre en résidu
sec de 5,6 g/litre).

Une dernière remarque qui est importante pour l'appli-
cation en station thermale, est que l'appareil mesure le
contenu en sodium (on peut aussi l'utiliser avec d'autres
corps à condition de l'équiper des filtres optiques corres-
pondants) d'une particule quelle que soit la forme de cette
dernière (gouttelette, noyau hydraté, noyau creux, etc...) ;
on est donc moins lié aux conditions de séchage de la
gouttelette qu'avec, par exemple, un compteur optique qui,
pour un même poids peut donner des diamètres très
différents suivant les propriétés physico-chimiques du noyau
(voir ci-après).

Compteurs optiques de particules

Ces appareils ont connu un développement commercial
important au cours des quinze dernières années, car ils
ont des applications dans la grande industrie chaque fois
que l'on doit travailler en chambre propre.

Un faisceau de lumière est focalisé de façon à constituer
une petite cellule violemment éclairée dans laquelle on
envoie une à une les particules de l'aérosol à analyser.
A 90° du pinceau incident (quelquefois dans l'axe mais
avec un dispositif dit de fond noir) on place un photomulti-
plicateur qui transforme les éclairs lumineux dus au passage
des particules en des impulsions électriques qu'une électro-
nique appropriée amplifie et trie. On peut ainsi compter
et mesurer les particules comprises dans un volume défini,
cà condition qu'elles soient plus grandes qu'environ 0,3 µm.

En réalité il n'est pas facile de relier les impulsions
electriques aux caractéristiques dimensionnelles de la parti-
cule. La théorie due à Mie montre que la quantité de
lumière diffusée par une particule dans une direction \(\theta\)
par rapport au pinceau incident est fonction :

Presso thermale et climatique, 1988, 125, n° 5.
— de l’angle θ ;
— de la longueur d’onde de la lumière ;
— du rayon de particule ;
— de l’indice de réfraction et de la forme de la particule.

Cependant on a pu montrer que si on éclairait en lumière « blanche » et que l’on recueillait la lumière diffusée dans un angle solide étendu autour de la direction à 90°, la réponse du photomultiplicateur était une fonction uniformément croissante du diamètre de la particule. Numériquement cette fonction reste dépendante des caractéristiques physico-chimiques de la particule dont son indice de réfraction. C’est pourquoi on fixe conventionnellement cette courbe en la déterminant expérimentalement pour un aérosol particulier, celui de billes de latex de polyétyrène. Lorsque l’appareil mesure un aérosol réel, il donne pour chaque particule le diamètre dit de diffusion, c’est-à-dire le diamètre de la sphère de latex qui répond de la même façon dans le compteur. Cependant il est possible soit par l’expérience, soit par le calcul d’étalonner un compteur optique pour un aérosol particulier. C’est ce qu’on fait pour des gouttelettes d’eau car c’est nécessaire pour l’étude des aérosols d’eau thermale.

La plupart des appareils ne peuvent mesurer des concentrations supérieures à quelques centaines de particules/cm³ et, compte tenu de leur configuration, ils commencent à faire des erreurs au-dessus de 10 μm (en diamètre) (compteur Royco, Climent). Cependant des modèles spéciaux ont été développés pour pouvoir accéder aux fortes concentrations et aux grandes tailles (Knollenberg, Polytex) leur seuil inférieur de mesure est 0,3 ou 0,5 μm suivant les cas. Ils sont particulièrement utiles en salle d’inhalation collective où il faut pratiquement mesurer en situ des brouillards qui peuvent titrer plusieurs dizaines de milliers de particules/cm³.

ÉTUDE DES DIFFÉRENTES CATÉGORIES D’ÀEROSOLS RENCONTRES EN STATION THERMALE

Nous illustrerons cette étude en prenant le cas de La Bourboule où on les rencontre à peu près tous.

Les « aérosols simples » sont des salles au mur desquelles sont fixés des postes individuels (plusieurs centaines dans la station). Ils sont du type pulvérisateur pneumatique en verre, avec un réservoir à liquide qui est balayé en continu par un courant d’eau thermale. La pulvérisation initiale passe à travers une colonne à pointes de vigreux qui la débarrassent de ses plus grosses gouttelettes. A la sortie, l’aérosol est acheminé par un tuyau souple jusqu’à un mascar d’inhalation. Compte tenu des conditions physico-chimiques de production et de transport de la pulvérisation, le curiste respire un aérosol de gouttelettes d’eau thermale en cours de séchage. Pour le définir, on préfère mesurer ce qu’il était juste au moment de sa production, et calculer ensuite ce qu’il devient lors de son transport vers le patient. On emploie alors la méthode qui consiste à pulvériser une solution de chlorure de sodium à 10 p. cent en poids et à mesurer les noyaux salins résiduels avec le compteur à « scintillation », comme il a été dit plus haut. Cependant l’aérosol initial est fortement concentré, de l’ordre du million de particules/cm³, et le compteur ne peut supporter de telles concentrations. Il faut donc procéder à une opération de dilution. Elle se fait, au laboratoire, avec une chaîne de dilution qui est dérivée de celle mise au point pour l’étude des générateurs d’aérosols médicamenteux soumis à homologation [3] (figure 1).

L’aérosol de gouttelettes sortant du générateur doit être séché, dilué et transporté jusqu’au compteur de particules, sans altérer sa concentration ni sa distribution granulométrique. C’est une opération délicate à réussir et une multitude de détails technologiques concourent à ce but. Le cœur du dispositif sont des chambres à dilution dont on trouvera ailleurs la description et l’étude de leurs propriétés [4]. La première d’entre elles reçoit de l’air chauffé à 120°C, de sorte que les gouttelettes de la pulvérisation initiale sèchent rapidement. Ainsi on limite le plus possible le dététre de préférentiel des plus grosses gouttelettes. L’aérosol sec, et déjà dilué, n’est transféré que partiellement vers la chambre suivante. Pour mener à bien cette opération d’échantillonnage, on relle la sortie de la chambre chauffée, à l’entrée de la suivante, par un débitmètre à diaphragme 10 travaillant à faible perte de charge (pour limiter les dépôts de particules en son intérieur) et aspirant l’aérosol dans des conditions voisines de l’iso-némie (même vitesse dans son orifice d’entrée et à la sortie de la chambre). La suppression matrice est obtenue en obturant la sortie de la première chambre par une grille 9 dont un certain nombre de trous sont bouchés. La même disposition est adoptée entre la deuxième et la troisième chambre de telle sorte que l’on obtienne finalement une concentration accessible au compteur à scintillation disposé en sortie 3.

A titre d’exemple, des caractéristiques moyennes de la chaîne de dilution sont les suivantes :
— Chambre chauffée : diamètre 10 cm — débit d’air chaud 300 l/min — débit d’aérosol sec transféré 10 l/min.
— 2e chambre à dilution : diamètre 20 cm — débit d’air propre 700 l/min — débit d’aérosol transféré 7 l/min.
— 3e chambre à dilution : diamètre 60 cm — débit d’air propre 4 500 l/min.

C’est avec la même installation que l’on étudie d’autres types de pulvérisateurs pneumatiques dont le « manosique ». Pour l’étude de certains aérosols, on peut remplacer le compteur à scintillation par un compteur optique de particules.

Salles d’électroaérosol

L’électroaérosol est produit dans des pièces qui font par exemple 9,5 × 3,4 m avec une hauteur sous plafond de 3,2 m. Il y a généralement deux générateurs par pièce. Ce sont des pulvérisateurs pneumatiques en métal, à grand débit (de l’ordre de 1,2 m²/min) qui sont alimentés d’une part en air comprimé, d’autre part en eau thermale grâce à un goutte à goutte. Ils sont placés au plafond de la pièce et reliés à un générateur de haute tension qui charge électriquement les aérosols produits. Après un certain temps de fonctionnement, la pièce se trouve remplie de cet électro-aérosol puisqu’on l’introduit à un débit d’environ 150 m³/h, l’air initial étant progressivement chassé vers l’extérieur via les ouvrants. Comme on utilise de l’air comprimé, donc sec, l’humidité relative se maintient au-dessous de 60 p. cent et l’aérosol est constitué de noyaux du résidu sec.

Cette fois l’aérosol inhalé est l’aérosol initial, significativement modifié par l’existence du champ électrique et
les phénomènes de dépôt normalement actifs dans une telle salle. La mesure "in situ" s'impose. Le moyen de mesure le plus adéquat est le compteur à scintillation. Mais cette fois encore les concentrations numériques sont trop fortes et il faut introduire dans la salle un dispositif de dilution. Il est constitué (fig. 2) de deux chambres à dilution travaillant en série et alimentées en air propre grâce à un ventilateur de recyclage : ainsi il n'y a pas d'interférence entre cet ensemble et l'aérosol de la pièce (ce qui serait le cas avec un montage en circuit ouvert). La première chambre de diamètre 23 cm travaille avec des débits en air propre de dilution de quelques m³/min. La seconde qui est emboîtée dans la 1ʳᵉ a un diamètre de 12 cm et travaille normalement vers les 200 l/min. La grande est en surpression par rapport à la petite ce qui permet d'assurer un débit entre les deux. Ce débit est mesuré par un tube de Venturi. On équilibrera le circuit aéralique de sorte que la sortie de la 2ᵉ chambre à dilution soit à la pression extérieure ce qui permet d'y introduire directement le tube de prélèvement du compteur, ce dernier ne pouvant travailler sur des conduites en pression ou dépression. À l'entrée de la première chambre, l'aérosol est introduit par une trompe à air.

À titre d'exemple, des conditions moyennes d'utilisation de cet ensemble sont :

— pression d'entrée dans la chambre 25 mm d'eau : air comprimé pour la trompe 37,5 l/min ; aérosol aspiré par la trompe de 6,1 l/min ;

Presse thermale et climatique, 1988, 125, n° 5.
— débit d’air propre 1ère chambre 2.266 l/min ;
— débit d’air propre 2ème chambre 182 l/min ;
— débit aérosol de la 1ère et la 2ème chambre 9,4 l/min.

L’aérosol de la pièce est alors dilué 790 fois avant d’être envoyé au compteur.

Salles d’inhalation

Ce sont de vastes pièces, très peuplées, où on pulvérise l’eau thermale grâce à des pulvérisateurs pneumatiques en métal qui sont fixés en haut des parois. Après un certain temps de fonctionnement, la pièce se remplit d’une brume épaisse qui tient quelques grammes d’eau thermale par m³ d’air. Elle est constituée des gouttelettes initiales qui ont évoluées dans cette atmosphère saturée en vapeur d’eau, jusqu’à atteindre une taille d’équilibre imposée par leur contenu en résidu sec [1]. Elles sont néanmoins facilement perturbées par toute intervention extérieure et la mesure « in situ » s’impose. Il existe heureusement des compteurs optiques qui ont été développés pour l’étude des nuages. L’appareil « Poltec » que nous essayons de mettre en œuvre s’en inspire. Les conditions de travail pour le compteur sont difficiles et nous n’avons pas pu encore aboutir avec certitude. On sait cependant que les gouttelettes d’eau ont des diamètres inférieurs à 30 μm.

EXEMPLES DE RÉSULTATS

Un aérosol est caractérisé par sa concentration massique ou numérique, et sa distribution granulométrique que l’on peut représenter sous la forme d’une courbe cumulée en poids où, en regard de chaque diamètre particulier, on porte le pourcentage de la population constituée des particules de taille inférieure (fig. 3). On trace habituellement cette courbe en utilisant un papier spécial dit log-normal. Le diamètre correspondant à 50 p. cent est appelé diamètre médian et il sert à évaluer, en première approximation, la plus ou moins grande finesse de l’aérosol. Quand on veut étudier le dépot dans des curistes qui sont chacun un cas particulier, on envisage un individu moyen respirant suivant un cycle respiratoire standard [22]. Connaissant la concentration pondérale et la distribution granulométrique de l’aérosol, il est possible de calculer la quantité de principe actif déposé dans les différents compartiments pulmonaires après un temps connu d’exposition. On trouvera ailleurs les principes de ces calculs [22].

« L’aérosol simple » et « l’aérosol manoseonique » produisent des nuages de gouttelettes dont les concentrations pondérales initiales sont respectivement de 15 et 14 g d’eau thermale par m³ d’air. La concentration numérique atteint le million de particules/cm² pour l’aérosol simple et 6 millions pour le « manoseonique ». Les distributions granulométriques sont données par la figure 3. Avec des particules moyennes voisines de 5 μm, on a là des aérosols qui peuvent atteindre l’arbre broncho-pulmonaire (respiration orale) ou se déposer dans les voies aériennes supérieures (en particulier pénétration possible dans l’oreille interne avec le manoseonique). Les conditions typiques d’exposition d’un sujet aux aérosols simples sont de 15 minutes en respiration orale. En supposant un cycle respiratoire standard avec des phases inspiratoire et expiratoire de 2 secondes chacune, se succédant sans pause, avec un volume courant de 500 cm³, on dépose 1,4 mg de principe actif dans la bouche et 4,2 mg dans l’arbre broncho-pulmonaire (le principe actif est assimilé globalement au résidu sec).

« L’électroaérosol » est constitué d’un nuage de particules sèches dont la concentration pondérale est de 0,6 mg/cm³ pour une teneur de 10 000 noyaux/cm³. La distribution granulométrique est donnée par la figure 3. Bien que ces noyaux se réhydratent rapidement lors de leur passage dans la trachée, ils peuvent atteindre le poumon profond et, en respiration orale, on calcule que 70 p. cent de ce qui est inhalé se dépose dans l’arbre broncho-pulmonaire tandis que 25 p. cent est rejeté à l’expiration.

CONCLUSION

Même s’ils sont parfois assez coûteux à mettre en œuvre, des moyens de mesure existent qui permettent de connaître et de maîtriser l’aérosolthérapie en station thermale. La qualité, et l’uniformité par type, des aérosols proposés aux curistes est le premier objectif que l’on peut atteindre. L’optimisation des différentes pratiques (en ajustant les caractéristiques de l’aérosol inhalé et en contrôlant mieux les conditions respiratoires) est une étape ultérieure étroitement dépendante des études médicales que mènent les différentes stations.

RÉFÉRENCES

Presse thermale et climatique, 1988, 125, n° 5.
La pharmacochimie des eaux sulfurées en crénotherapie ORL et stomatologie

F. CLANET, S. DUCOS-FONFREDE *

(Tours)

La thérapeutique thermale sulfurée ORL et stomatologique est fondée essentiellement sur l'apport au contact des voies respiratoires, de l'oreille interne et de la bouche d'eaux minérales sulfurées naturelles ou conditionnées sous différentes formes fluides permettant leur application au patient.

Traditionnellement on procède à ces soins extemporanément en établissement thermal où l'eau sulfurée est utilisée, soit directement, soit après passage dans divers appareils permettant :

— de modifier sa thermalité ;
— de la stocker et de la transporter ;
— de la conditionner sous diverses formes d'administration : nébulisats, aérosols, pulvérisations, douches et irrigations sous pression, etc. ;
— d'en extraire les gaz (insufflation).

De plus, afin de prolonger les effets de la cure thermale ou d'y préparer le malade, il est intéressant de conserver l'eau sulfurée ou des préparations dérivées en la conditionnant sous différentes formes de type pharmaceutique (flacons, ampoules, boîtiers aérosols). Leur utilisation individuelle à domicile devient ainsi possible, élargissant le champ d'applications de la crénotherapie sulfurée.

Sachant l'instabilité des eaux sulfurées, il est évident qu'en fonction des traitements physiques et mécaniques qu'on leur fait subir, leur chimisme sera plus ou moins modifié.

Notamment, le soufre sera délivré au contact de la sphère ORL ou de la cavité buccale du malade à différents degrés d'oxydation sous forme d'espèces chimiques se caractérisant par leurs propriétés thérapeutiques.

Il est donc fondamental pour le médecin thermal averti de connaître la composition qualitative et quantitative des fluides thermaux qu'il va prescrire à ses patients. Les propriétés thérapeutiques de ces préparations thermales dépendent de leur état physique, des caractères de leur minéralisation, des gaz qu'elles contiennent ou à leur contact. Tous ces paramètres conditionnent la physionomie physico-chimique du soufre et des autres éléments multivalentis qu'elles renferment.

En ce qui concerne le soufre, on sait que cet élément peut exister en milieu aquieux dans des états d'oxydation plus ou moins stables allant de —2 à +6 qui présentent des activités thérapeutiques précisées au tableau 1.

Après avoir rappelé quelques données générales sur les équilibres thermodynamiques entre espèces du soufre dans les eaux sulfurées, nous présenterons notre concept pharmacochimique de l'exploitation des eaux sulfurées en crénotherapie.

Tableau 1. — Espèces chimiques du soufre et action thérapeutique.

<table>
<thead>
<tr>
<th>Degré d'oxydation</th>
<th>Espèces chimiques</th>
<th>Action thérapeutique</th>
</tr>
</thead>
<tbody>
<tr>
<td>+6</td>
<td>Sulfates, HSO₄⁺, SO₄⁻</td>
<td>Cure interne :</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Diurétique, Hépato-biliaire</td>
</tr>
<tr>
<td>+4</td>
<td>Sulfites, HSO₃⁻, SO₃⁻</td>
<td>Cure externe :</td>
</tr>
<tr>
<td>OXIDATION</td>
<td></td>
<td>Dermatologique (7) ORL</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Dermatologique (7) Stomatologique</td>
</tr>
<tr>
<td>+2</td>
<td>Thiosulfite, S₂O₃⁻</td>
<td>Stomatologique (7) ORL</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Dermatologique Stomatologique</td>
</tr>
<tr>
<td>REDUCTION</td>
<td></td>
<td>Dermatologique Stomatologique</td>
</tr>
<tr>
<td></td>
<td>Sulfure élémentaire S₈</td>
<td>ORL</td>
</tr>
<tr>
<td></td>
<td>Sulfures, H₂S, S₈</td>
<td>Dermatologique Stomatologique</td>
</tr>
<tr>
<td></td>
<td>HS⁻, S⁻</td>
<td>ORL</td>
</tr>
<tr>
<td></td>
<td>Polysulfures S₈⁻</td>
<td>Dermatologique Stomatologique</td>
</tr>
<tr>
<td></td>
<td>(2 ≤ n ≤ 5)</td>
<td>Rhumatologique</td>
</tr>
</tbody>
</table>

Nous l'illustrerons, ensuite, par les résultats que nous avons obtenus dans trois stations thermales comportant des services de soins ORL et de stomatologie :

— Amélie-les-Bains et Saint-Honoré-les-Bains (ORL) ;
— Aix-les-Bains Mariluz (ORL et stomatologie).

Ces stations se différencient par les eaux sulfurées qui y sont respectivement exploitées.

Enfin nous parlerons des préparations d'eaux sulfurées permettant de poursuivre hors cure une crénotherapie sulfurée d'entretien.

Données physico-chimiques et biologiques sur les eaux naturelles sulfurées

Le soufre dans les eaux naturelles ne peut exister que sous certaines formes chimiques stables thermodynamiquement et donnant lieu à des équilibres selon les conditions de milieu. Par ordre de degré d'oxydation croissant, on peut distinguer :

— le bloc sulfure : sulfure d'hydrogène moléculaire, H₂S ; les ions sulfures, HS⁻, S⁻ et polysulfures, S₈⁻ (avec 2 ≤ n ≤ 5) ;
— le soufre élémentaire colloïdal et précipité, S₈ ;
— les ions thiosulfate, S₂O₃⁻ et sulfite, SO₃⁻ ;
— les ions sulfate, SO₄⁻.

L'existence de ces espèces chimiques du soufre est sous la dépendance de processus oxydatifs et réductifs faisant intervenir l'oxygène atmosphérique, le dioxyde de carbone dissous, le pH, la lumière et la présence de micro-organis-
mes qui agissent comme biocatalyseurs dans la cinétique des processus d’oxydo-réduction et responsables de la sulphydrisation et de la sulfuration de la matière organique.

Le rôle des cations sodium et calcium n’est pas aussi négligeable, car ces ions induisent des réactions d’hydrolyse conduisant à la formation de sulfure d’hydrogène moléculaire.

L’ensemble de ces processus chimiques et biologiques est schématisé à la figure 1. Le cycle biologique du soufre est rappelé dans la figure 2.

Classiquement selon la prédominance des cations Na⁺ et Ca²⁺, on distingue deux grandes classes d’eaux minérales sulfuriées utilisées en crénotherapie :

- les eaux sulfuriées sodiques ;
- les eaux sulfuriées calcaires, dites encore sulfuriées accidentelles, car leur sulfuration résulte de la réduction microbienne de l’ion SO₄²⁻.

Elles sont alcalines (sulfuriées sodiques à pH > 8) ou sensiblement neutres (sulfuriées calcaires à pH ≈ 7) : légèrement acides ou alcalines.

En général leur minéralisation est faible et dé passe rarement 600 mg.l⁻¹.

Les unes et les autres ont pour constituants caractéristiques de l’hydrogène sulfure, les sulfures acides de sodium et de calcium, des sulfates, des thiosulfates, des sulfites, des carbonates et de la silice.

Selon les conditions de milieu, le soufre total s’exprime en concentrations moléculaires selon la relation suivante : Σ (n — 1) [Sₙ₋₁⁻]

Σ [H₂S] et Σ (n — 1) [Sₙ₋₁⁻] représentent respectivement la somme des sulfures et des polysulfures en solution.

Enfin, il ne faut pas oublier le rôle important joué par les gaz thermaux d’accompagnement de ces eaux sulfuriées.

Certains de ces gaz (oxygène, sulfure d’hydrogène, dioxyde de carbone) contribuent aux conditions d’équilibre entre espèces chimiques du soufre en solution. Le dioxyde de carbone interviennent dans l’équilibre caïco-carbonique de l’eau minérale.

En plus de ces gaz réactifs, on trouve généralement des gaz inertes (azote, gaz rares) et des traces d’hydrogène et d’hydrocarbures.

LE CONCEPT PHARMACOCHIMIQUE DE LA CRÉNOTHERAPIE SULFURÉE

À notre avis, toute approche physico-chimique rationnelle de la crénotherapie sulfuree conduit à une conception pharmaco-chimique de l’exploitation de l’eau minérale per-

Fig. 1. — Equilibre entre espèces chimiques du soufre en solution aqüeuse.

Fig. 2. — Cycle biologique du soufre d’après Orr [2].

Press. thermale et climatique, 1988, 125, n° 5.
mettant de connaître et de maîtriser à chaque niveau d’utilisation les paramètres physiques, chimiques et microbiologiques des fluides sulfurés délivrés au malade (fig. 3).

Nous ne considérons ici que les caractères physiques, chimiques et principalement la sulfuration aux différents points d’une installation type de crénothérapie sulfurée ORL et stomatologique telle que nous l’avons schématisée à la figure.

Comme il est indiqué au tableau I, l’action thérapeutique des eaux sulfurées en ORL et stomatologie est liée à la présence d’espèces réductrices du soufre et au soufre colloïdal.

La matière première hydrosulfurée active est extrêmement fragile dès qu’elle est au contact de l’air, du fait que ces espèces chimiques du soufre ont tendance à s’oxyder et à évoluer jusqu’au stade sulfate (forme stable) plus ou moins rapidement selon les conditions de milieu.

La pharmacohimie a pour but de maîtriser ces conditions, afin d’assurer au malade une crénothérapie sulfurée de qualité par la délivrance d’agents thérapeutiques sulfurés actifs et contrôlés. Nous distinguons de ce point de vue :

— la pharmacohimie analytique : connaissance et contrôle de l’eau sulfurée et de ses préparations dérivées (fluides thermaux, formes conservées) ;

— la pharmacohimie préparative : ingénierie (modélisation d’installations thermales et d’appareils médicaux) ; formulation-conservation de l’eau sulfurée pure ou associée à d’autres produits.

Nous examinerons ces deux aspects, dans ce qui suit, en les illustrant par les résultats que nous avons obtenus pour trois stations thermales :

— Amélie-les-Bains (Thermes Romains) ;

— Saint-Honoré-les-Bains ;

— Aix-les-Bains.

PHARMACOHIMIE ANALYTIQUE DES EAUX SULFURÉES

L’étude du chimisme des eaux minérales sulfurées et des préparations crénothérapeutiques qui en dérivent nécessite la mise en œuvre d’une stratégie analytique assurant une détermination rapide et précise des paramètres évolutifs des milieux sulfurés.

Tous les prélèvements d’échantillons d’eau sont effectués à la seringue à l’abri de l’air. Les prélèvements pour analyse des gaz sont réalisés en ampoule sous vide. Notre protocole expérimental est schématisé à la figure 4. Il comporte les points suivants :

Analyses extemporanées

— Mesure de la température, de la conductivité (ou de la résistivité), du pH et du potentiel redox (Eh ou rH2) ;

— Détermination de l’alcalinité totale, somme algébrique...
des concentrations molaires des anions et des cations n’ayant pas de propriétés acido-basiques (HCO$_3^-$, CO$_3^{2-}$, HS$^-$, S$^2-$, H$_2$SiO$_4^-$, H$_2$BO$_3^-$, OH$^-$, H$^+$).

— Détermination potentiométrique des sulfures et polaro-

ographique des thiosulfates et des sulfites ainsi que des

sulfures ; la polaroGRAPHIE est également utilisée pour

doser l’arsenic trivalent et d’autres éléments traces

à différents états d’oxydation.

— Dosage des sulfates par chromatographie liquide ionique

haute performance, technique qui permet aussi la détermi-

nation d’autres anions (HCO$_3^-$, CO$_3^{2-}$, Cl$^-$, Br$^-$, I$^-$,

NO$_3^-$).

— Dosage du soufre élémentaire colloïdal par spectrophoto-

métrie UV à 278 nm après extraction chloroformique.

{

TABLEAU II. — Caractères physiques et chimiques des eaux
sulfurées alimentant les thermaux d’Amélie-les-Bains,
Saint-Honoré-les-Bains et Aix-Marliz.

| Eau minérale sulfurée (matière première) | Amélie-les-Bains (mélange ORL ; Petit Escaladou,
Petit Montjoliot) | St-Honoré-les-Bains (Garenne) | Aix-Marliz (réservoir de Bonjean) |
<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Température (°C)</td>
<td>54,5</td>
<td>29,5</td>
<td>12,0</td>
</tr>
<tr>
<td>Conductivité à 20 °C (omhs.cm)</td>
<td>2.403</td>
<td>1.176</td>
<td>1.282</td>
</tr>
<tr>
<td>pH</td>
<td>8,77</td>
<td>6,80</td>
<td>7,13</td>
</tr>
<tr>
<td>Alc tot. (mE/l)</td>
<td>2,15</td>
<td>2,78</td>
<td>6,08</td>
</tr>
<tr>
<td>Résidu sec à 180 °C (mg/l)</td>
<td>314,2</td>
<td>400,0</td>
<td>619,8</td>
</tr>
<tr>
<td>Espèces chimiques :</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Σ H$_2$S</td>
<td>2,44</td>
<td>1,25</td>
<td>13,98</td>
</tr>
<tr>
<td>S$_{O_2^-}$</td>
<td>1,68</td>
<td>0,00</td>
<td>3,03</td>
</tr>
<tr>
<td>SO$_4^{2-}$</td>
<td>0,00</td>
<td>0,00</td>
<td>0,00</td>
</tr>
<tr>
<td>NO$_3^-$</td>
<td>34,27</td>
<td>17,60</td>
<td>161,00</td>
</tr>
<tr>
<td>Cl$^-$</td>
<td>15,20</td>
<td>6,94</td>
<td>68,66</td>
</tr>
<tr>
<td>SO$_3^{2-}$</td>
<td>82,42</td>
<td>62,80</td>
<td>19,13</td>
</tr>
<tr>
<td>CH$_4$</td>
<td>23,00</td>
<td>147,60</td>
<td>41,50</td>
</tr>
<tr>
<td>HCO$_3^-$</td>
<td>104,00</td>
<td>169,00</td>
<td>357,70</td>
</tr>
<tr>
<td>Na$^+$</td>
<td>99,98</td>
<td>144,75</td>
<td>84,40</td>
</tr>
<tr>
<td>K$^+$</td>
<td>1,60</td>
<td>12,70</td>
<td>3,48</td>
</tr>
<tr>
<td>Ca$^{2+}$</td>
<td>1,77</td>
<td>42,00</td>
<td>107,00</td>
</tr>
<tr>
<td>Mg$^{2+}$</td>
<td>13,97</td>
<td>2,50</td>
<td>16,50</td>
</tr>
</tbody>
</table>

Analyses différées

— Détermination de la minéralisation globale de l’eau par

pesée du résidu sec à l’évaporation à 180 °C.

— Analyse élémentaire qualitative du résidu sec par spec-

 trométrie FX.

— Dosage des cations par spectrophotométrie d’absorp-

tion atomique.

— Dosage d’anions.

— Déterminations qualitative et quantitative des gaz di-

sous par chromatographie gazeuse.

L’étude des effets chimiques des fluides sulfurés émis

par les appareils médicaux utilisés en ORL est réalisée à

l’aide du montage expérimental représenté à la figure 5.

L’appareil étudié est relié à une série de condenseurs et

absorbeurs associés en série à un compteur volumétrique.

Ces pièces comportent un orifice latéral à septum permet-

tant des prélèvements à la seringue pour analyse des con-

densats en cours d’expérimentation. Les composés volatils

disulfure d’hydrogène, dioxyde de soufre, etc.) sont piégés

dans un absorbeur garni de soude 3N (45 ml).

Les résultats que nous avons obtenus en appliquant cette

méthodologie aux eaux sulfurées alimentant les salles de

soins ORL ou de stomatologie des Etablissements thermaux

d’Amélie-les-Bains, Saint-Honoré-les-Bains et Aix-Marliz

sont consignés au tableau II.

C’est à partir de cette matière première sulfurée que sont

réalisées les diverses préparations thermales délivrées aux

curistes. Des déterminations journalières de température, de
résistivité, de pH et de E₆ permettant globalement de s’assurer de sa qualité. Ces déterminations devraient être rendues obligatoires et consignées dans un cahier soumis à l’inspection sanitaire.

PHARMACOCHEMIE PRÉPARATIVE

Elle est basée sur les données de la pharmacochimie analytique. Elle a pour objet :

— la conception du captage, du transport et du stockage de l’eau minérale sulfuree, afin d’éviter sa pollution et de garantir la présence d’espèces chimiques du soufre dans l’eau alimentant les différents appareils médicaux ;

— la détermination de la composition qualitative et quantitative des préparations thermales délivrées par les appareils médicaux ;

— la réalisation de préparations sulfurees conservées.

Thermes Romains à Amélie-les-Bains : alimentation des salles de soins ORL

Initialement l’installation comportait de nombreuses imperfections :

— transport de l’eau en tuyaux en fer galvanisé ;

— propulsion par des pompes centrifuges agitant l’eau et facilitant le dégagement du disulfure d’hydrogéne ainsi que l’oxydation des sulfures ;

— mélange et stockage des eaux dans des bassins en ciment non étanches ;

— les eaux sulfurées utilisées sont celles d’émergences par failles avec mise à l’air : Petit Escaldalou et Petit Montjolet.

Nos recherches analytiques ont révélé que dès mélange dans les bassins il n’y avait pratiquement plus de sulfures et leur absence au niveau des salles de soins ORL : l’eau thermale qui y était délivrée ne comportait plus que des sulfates (92 p. cent du soufre total) et des traces de thiosulfate. Les principales formes actives du soufre pour les voies respiratoires étaient donc éliminées par suite de mauvaises conditions de transport et de stockage des eaux thermales.

Bien qu’il n’ait pas été possible de modifier les conditions de captage, nous avons remédié en partie à cette situation en modélisant une installation (fig. 6) :

— le mélange des eaux thermales est réalisé dans un collecteur étanche en CPV ;

— les canalisations sont réalisées en PFVD (polyfluorure de vinylidène), matériau résistant à des températures et des pressions élevées et doux d’alimentation ;

— les pompes centrifuges sont remplacées par des pompes volumétriques à vis sans fin ;

— un réservoir à membrane sous pression d’azote réalise le stockage en permettant la montée de l’eau thermale sous pression jusqu’au troisième étage de l’établissement où est situé le service ORL.

Thermes de Marlioz à Aix-les-Bains : alimentation de l’établissement thermal avant réchauffage

A Marlioz sont exploitées les sources Bonjean et Esculape de faible débit (environ 0,08 m³/h). Il s’agit d’eaux sulfurees calcaires accidentelles hypothermales.

A l’origine, les sources émergeaient au fond de bassins de captage non étanches dans un site comportant un ruisseau important d’eaux superficielles.

Les eaux émergent d’un filon de sables morainiques dans des éboulis glaciaires ne permettant pas la réalisation de forages.

La contre-pression due à la masse d’eau stockée dans les bassins de captage contribuait à diminuer les débits des sources.

Nous nous sommes trouvé devant une situation très dégradée :

— pollution microbienne ;

— mélange des eaux sulfurées à des eaux de surface ;

— altération de la sulfuration.

Pressa thermale et climatique, 1988, 125, no 5.
La perte en soufre entre le griffon vrai (bassin de captage vidé) et le bassin de captage est d'environ 18 p. cent pour le bloc sulfures-thiosulfates. Quant au soufre total dissous il s'abaisse de 6 p. cent entre ces deux points, du fait de la formation de soufre élémentaire colloïdal et précipité.

Nous avons remédié à cette situation en modélisant l'installation de captage et de transport-stockage comme il suit pour la source Bonjean : le bassin de captage est supprimé et après nettoyage de l'émergence naturelle, celle-ci est recouverte d'une cloche étanche en CPV d'où l'eau est acheminée par gravité vers un réservoir de stockage enterré dont les parois sont en ciment lissé. L'eau y arrive par le fond et ensuite elle est dirigée par gravité vers l'établissement thermal. Les tuyaux sont en CPV. Le plan d'eau dans le bassin réservoir se recouvre d'une pellicule de carbonate de calcium et de soufre élémentaire qui constitue une protection de l'eau sulfurée.

Dans ces conditions de captage et de transport, la sulfuration de l'eau minérale n'est pas sensiblement modifiée : à la cloche de captage, le bloc sulfure-thiosulfate représente 23,15 à 24,22 p. cent du soufre total dissous ; à la sortie du réservoir de stockage, ce même bloc représente 21,16 à 22,7 p. cent du soufre total dissous.

La conception de cette installation est donc très satisfaisante et garantit une parfaite conservation des propriétés thérapeutiques de l'eau thermale jusqu'à son arrivée dans les thermaux. Une étude pharmacochimique de l'eau réchauffée avec modélisation d'un système de réchauffage ad hoc n'a pas été faite, ainsi qu'au niveau des appareils de crênothérapie ORL et stomatologiques, ce qui est regrettable pour le corps médical et les curistes.

Préparations thermales extemporanées par appareils de crênothérapie

Dans les établissements thermaux soucieux d'apporter au médecin une information qualitative et quantitative de la composition des fluides thermaux délivrés par divers appareils, nous avons pu établir ce que nous convenons d'appeler des profils de sulfuration et de minéralisation pour un temps d'exposition conventionnel de 10 min. Nos résultats sont illustrés par les figures 7 a et b qui transduisent les valeurs numériques d'une précédeante publication.

Il faut noter que certains de ces appareils, alimentés par de l'air comprimé (générateurs d'aérosols, insufflateurs) ont pour effet de produire des préparations hydrosulfurées enrichies en espèces oxygénées du soufre (S₂O₃⁻, SO₃⁻, SO₄⁻).

Il faut noter aussi l'entraînement dans ces fluides thermaux d'autres espèces chimiques comme nous l'avons mis en évidence pour les aérosols : Cl⁻, SiO₂⁻, Na⁺, K⁺, Ca++. En bref, pour une technique crênothérapeutique donnée, on observe un profil sulfuré et minéral caractéristique du fluide thermal émis par l'appareil ; ce profil qualitatif et quantitatif est fonction de la nature de l'eau minérale utilisée, du gaz porteur (air ou vapeur d'eau...) et de la conception de l'appareil.

Préparations sulfurées conservées

La conservation des eaux minérales sulfurées naturelles ou entrant dans la composition de préparations pharmaceutiques et de produits d'hygiène présente un intérêt évident. Elle répond :

— d'une part à une demande réelle des médecins et des curistes désirant prolonger la cure hors saison thermale ou s'y préparer ;

— d'autre part à une demande de certaines stations thermales saisonnières et de laboratoires désirant développer une thiothérapeutique naturelle.

Le problème du conditionnement des eaux sulfurées est difficile à résoudre de façon rigoureuse et s'est longtemps posé tant qu'on ne disposait pas d'une technologie per-

![Graphique](image_url)

Fig. 7. — Profils (ou spectres) de sulfuration et de minéralisation de fluides émis par divers appareils thermaux ORL.

Presse thermale et climatique, 1988, 125, no 5.
b) Profils des fonds minéraux des aérosols.

c) Profils de sulfuration des nébulisats et insufflats à Saint-Honoré-les-Bains.

Fig. 7b et c. — Voir légende page précédente.

mettant de les maintenir à l’abri de l’air et de la lumière en présence de leurs propres gaz dissous. Ce n’est que dans de telles conditions que les formes réductrices du soufre en solution peuvent être conservées.

Une première approche de commercialisation d’eaux sulfurées hors station thermale a été réalisée par les Laboratoires de Luchon (Soluté PRE-2 : eau sulfurée isotonisée vendue en flacons) et les Laboratoires d’Uriage (ampoules d’eau sulfurée naturelle). La conservation est obtenue en procédant sous atmosphère d’azote ce qui entraîne une perte partielle des gaz dissous de l’eau minérale. De plus, le type de récipients utilisés (flacon ou ampoule) ne permet pas de conserver intégralement l’eau sulfurée dès qu’ils sont ouverts.

Pour remédier à ces inconvénients, nous avons élaboré un procédé de conditionnement en anérobiose stricte sous vide en unités de type aérosol bicompartimentales (fig. 8).

Ce type de récipient opaque comporte une barrière de pression déformable et étanche séparant :

— un premier compartiment fermé par une valve d’où l’air est éliminé (vide de 10⁻² bar) avant d’y admettre l’eau sulfurée (ce compartiment joue le rôle de piège vis-à-vis de l’eau minérale et de ses propres gaz) ;
— un deuxième compartiment où est introduit un gaz comprimé ou liquéfié propulsant maintenant l'eau sous pression sans aucun contact avec elle.

La réserve d'énergie que constitue ce gaz propulseur et l'équipement de la valve par différents embouts permettent de réaliser individuellement les principales techniques de la crénéothérapie sulfurée ORL et stomatologique : pulvérisations, irrigations, douches, aérosolutions. La forme galénique aérosol offre au malade l'avantage de pouvoir bénéficier à domicile d'une crénéothérapie sulfurée qu'il ne pouvait trouver qu'à la station thermale.

Ce procédé appliqué aux eaux sulfurées de Marilou nous a donné des résultats excellents comme on peut en juger par les résultats consignés au tableau III. Pour un temps de vieillissement de 11 mois à température ambiante, la perte de sulfuration n'est que de 11 p. cent et les autres caractères de l'eau minérale ne sont pas modifiés.

Après utilisation, l'ouverture des conteneurs testés ne nous a révélé aucun point de corrosion tant au niveau de la barrière de pression en aluminium souple que des éléments métalliques et plastiques de la valve.

TABLEAU III. — Résultats obtenus pour les eaux de Marilou (Source Esculape) conditionnées en unités aérosol en anéérobiose strictes.

<table>
<thead>
<tr>
<th>Temps</th>
<th>Prélèvement sur :</th>
<th>H2S (mg/l)</th>
<th>pH</th>
<th>H2S</th>
<th>Résistivité à 20 °C (Ohms . cm)</th>
</tr>
</thead>
<tbody>
<tr>
<td>arrivée sur remplissage</td>
<td></td>
<td>10,89</td>
<td>6,93</td>
<td>12,5</td>
<td>1 280</td>
</tr>
<tr>
<td>0 unité aérosol</td>
<td></td>
<td>10,54</td>
<td>6,93</td>
<td>12,5</td>
<td>1 280</td>
</tr>
<tr>
<td>1 jour unité aérosol</td>
<td></td>
<td>10,02</td>
<td>6,92</td>
<td>12,5</td>
<td>1 280</td>
</tr>
<tr>
<td>11 mois unité aérosol</td>
<td></td>
<td>9,38</td>
<td>6,93</td>
<td>12,5</td>
<td>1 280</td>
</tr>
<tr>
<td>11 mois unité aérosol utilisée</td>
<td></td>
<td>8,33</td>
<td>6,98</td>
<td>12,5</td>
<td>1 280</td>
</tr>
</tbody>
</table>

N.B. — Les valeurs de H2S sont des moyennes sur 5 échantillons. Ecart par rapport à la moyenne ± 0,5.

L'emploi de ces unités aérosol s'est avéré très commode dans un service hospitalier où elles ont été utilisées pour une étude pharmacologique des propriétés de l'eau sulfurée dans le traitement des parodontoses.

CONCLUSION

Des différents exemples que nous avons évoqués, il ressort que la crénéothérapie sulfurée ORL et stomatologique ne peut être une thérapeutique de qualité que par une maîtrise parfaite de l'eau minérale sulfurée.

Ceci ne peut être obtenu que par une conception pharmaco-chimique de l'agent thérapeutique thermal, démarche scientifique base de l'élaboration de tout médicament.

L'établissement thermal ne peut plus être de nos jours un lieu où règne l'empire du plombier et de l'installateur de chauffage-sanitaire et où l'on applique au malade des jets d'eau ou de vapeurs.

L'eau minérale et, en particulier les eaux sulfurées, sont des solutions d'espèces chimiques dont l'intégrité doit être maintenue ou modulée et dont le médecin doit connaître la composition qualitative et quantitative.

C'est le rôle du pharmacoclinique de l'en assurer et de concevoir toutes préparations extemporanées ou conservées ayant pour matière de base des eaux minérales sulfurées captées et maintenues dans des conditions d'anaérobie aussi strictes que possible.

REFERENCES

La phycothérapie :
une nouvelle thérapeutique des parodontopathies

J.P. PETIT *

(Biarritz)

Le vocable Phycothérapie est un néologisme que nous avons construit à l'aidedu radicaux :
— ψυχος : herbe marine,
— θεραπευ : soins,
pour désigner les traitements par les algues.

Les algues utilisées dans cette recherche sont des laminaires du type Digitata. Réhydratées avec de l'eau de mer (fraîche ou reconstituée), elle permet la mise en place d'une sorte de cataplasme sur les lésions.

LA THALASSOTHÉRAPIE AU CABINET DENTAIRE

Techniques et limites

Quelle que soit la technique utilisée, elle ne doit intervenir qu'après une préparation initiale du complexe dentogingival. Un détartrage soigneux, suivi d'un curetage de tous les culs-de-sac parodontaux mettent en action les mécanismes de défense de l'organisme. Une équilibration doit être réalisée ainsi que la suppression de tous les éléments iatrogènes : obturations et prothèses débordantes, extraction des dents irrécupérables... Enfin, des conseils d'hygiène sont donnés.

Le bain de bouche chaud

C'est la méthode la plus élémentaire de traitement buccodentaire par l'eau de mer. Son efficacité est des plus réduite car nous ne pouvons compter que sur l'hyperthermie qui en créant une vasodilatation périphérique augmente les phénomènes osmotiques. Il est impossible à tout liquide de lavage de pénétrer le sillon gingival au-delà de 3 mm. (Flotra 1972, Pitcher 1980, Hardy 1982).

Un lavage à la seringue ne modifie pas de façon notable les résultats.

L'irrigation buccale

C'est le domaine des hydropulseurs dentaires. Bhaskar et coll., pensent que le jet pulsant est préférable au jet non pulsant même à des pressions de 5 Kg pour la gencive attachée saine et à 3 Kg pour la gencive ulcérée.

L'efficacité mécanique (débris alimentaires) est trois fois plus active que le lavage à la seringue. Lubene démontre que le jet pulsé élimine 42 p. cent de plus de bactéries que le simple brossage et diminue la gingivite de 50 p. cent. D'après Krajewshi et coll., l'usage quotidien de l'hydro-

pulser diminue de façon significative la quantité de plaque et de Materia Alba.

L'utilisation fréquente d'un hydro-pulseur dentaire avec de l'eau salée a été réalisée maintes fois dans notre patientèle mais cette méthode, outre son efficacité réduite dans les parodontites sévères, souffre de plusieurs insuffisances en particulier l'impossibilité d'irriguer le fond des poches de plus de 3 mm. Dans ce cas, il se crée un effet de coin des exsudats du fond de la poche qui empêche tout lavage et toute oxygénation. Enfin, le jet dirigé dans le sens du grand axe de la dent provoque très rapidement des douleurs insupportables.

L'irrigation sous-gingivale

Un progrès très notable a été accompli par la mise sur le marché du système « Periodontal Pik » permettant avec des aiguilles de type Luer d'irriguer les poches les plus profondes dans leur totalité.

Le système s'adapte facilement sur l'hydro-pulseur Water-Pik et comprend un tube d'amenée d'eau et une pièce à main recevant les canules. Ces canules sont mousses mais présentent une ouverture latérale pour les aiguilles à usage unique et deux ouvertures pour les aiguilles stérilisables. Cette conception des aiguilles permet de rincer sans douleur toutes les poches même les plus profondes car la composante verticale se trouve supprimée.

Les aiguilles se présentant sous trois calibres : 0,35, 0,55, 0,80 mm.

La chirurgie parodontale ne peut pas régler tous les problèmes parodontaux dus souvent à des aberrations de forme (anfractuosités, sillons radiculaires et surtout dents multi-radiculées).

La flore colonisant le fond des poches parodontales est de type anaérobie. L'effet du jet pulsé de façon intermittente pourrait, quel que soit le produit utilisé, oxygéner le fond des poches parodontales et provoquer ainsi la destruction des bactéries anaérobies (litt et coll.).

Enfin, l'irrigation sous-gingivale permet d'éliminer tous les amas torrides mobilisés par le curetage cémentaire avec pour avantage sur une seringue manipulée manuellement d'obtenir des pressions régulières de 46 à 48 mm de Hg sans jamais dépasser 60 mm de Hg.

Principe de la phycothérapie

En cabinet dentaire, les méthodes classiques ne permettent pas de profiter de l'action interne tissulaire de la thalassothérapie. Elle résulte d'une action prolongée de type macération mettant en jeu des quantités trop importantes d'eau de mer. Notre idée est d'utiliser un cataplasme d'algues réhydratées par de l'eau de mer chaude, si possible fraîche. Cette pâte est tenue au contact de la gencive.
marginale au moyen d’un porte-empreinte individuel de conception originale. Cette technique peut permettre au patient de continuer sa cure à domicile avec facilité.

L’eau de mer peut être reconstituée en mélangeant 35 Gr de sel marin non raffiné dans un litre d’eau. Bien que l’on perde certaines propriétés de l’eau de mer fraîche, en particulier sa radioactivité, la concentration des éléments actifs de l’eau de mer est augmentée par l’apport de ces algues. Enfin, l’acide algique présent en quantité dans ce pansement, permet un contact plus intime des électrolytes avec les muqueuses. Cette méthode permet donc l’utilisation des éléments actifs de la mer à distance des côtes.

Matériel utilisé

La bouillie d’algues est fabriquée en mélangeant les algues avec de l’eau de mer chauffée aux environs de 40° pour obtenir une pâte onctueuse et filante. Cette mixture est alors chargée dans une seringue de 20 ml et maintenue à température dans une bouilloire thermostatique pouvant être réglée entre 37° et 42°.

Une gouttière dont la forme particulière sera décrite plus loin est chargée de cette préparation. Les zones des embrasures et de la gencive marginale sont recouvertes à l’aide de la seringue et l’ensemble de la denture est coiffé par cette gouttière qui établit un contact intime entre la muqueuse gingivale et le broyat d’algues réhydraté en empêchant la dilution par la salive. En outre, le goût un peu particulier est moins perçu par le patient qui peut tout en gardant la bouche fermée accepter un temps relativement long (jusqu’à 20 minutes).

A la fin du traitement, la bouche est rincée avec un hydropulseur dentaire rempli d’eau de mer chaude. Son action de massage complète la macération précédemment obtenue et permet d’éliminer tout résidu d’algues.

La gouttière utilisée pour le maintien des algues ressemble à celles conçues pour la fluoration des dents mais une contrainte supplémentaire s’impose : la nécessité de maintenir une quantité suffisante de produit au niveau des gencives malades, à la fois pour conserver une certaine hyperthermie et pouvoir utiliser à chaque séance assez de produit actif. Pour arriver à ce résultat, il convient de modifier l’empattement du site avant la construction de la gouttière. Un bourrelet de plâtre surcharge les zones dentogingivales créant ainsi une réserve où pourra s’accumuler le produit de traitement (fig. 1).

Méthode

Il faut commencer le traitement phycythérapeutique le plus tôt possible après la mise en état de la bouche pour profiter des défenses de l’organisme mobilisées dans les sites par l’agression microbienne liée à la parodontopathie.

Fig. 1. — Gouttière en place après préparation initiale.

Des séances de cure sont alors pratiquées avec une périodicité de deux par semaine généralement pendant un mois. La température supportée par le patient est fonction de sa pathologie gingivale mais une température moyenne de 40° est généralement bien acceptée. Le temps moyen est de 20 minutes, notre méthode permettant de traiter simultanément les deux arcades. Un lavage à l’eau de mer, de la bouche, pratiqué avec un hydropulseur dentaire est réalisé avant et après la séance : avant pour chasser le maximum de débris alimentaires et rincer les poches. Après, pour éliminer toute trace d’algues et compléter le traitement.

Une prescription de dentifrice salé prolongera la cure ;

Résultats

20 cas ont été retenus pour cette étude.

Le protocole opératoire a été identique pour tous les patients. A savoir :

Après anesthésie sériéeuse, deux séances de détartrage sus et sous gingival puis de cureottage des poches sont réalisées à 8 jours d’intervalle. La réévaluation du cas est toujours effectuée avant le début de la cure proprement dite. Ce délai permet au patient de se familiariser avec les méthodes d’hygiène et au praticien de réaliser la gouttière.

Les empreintes sont toujours prises après la préparation initiale pour avoir une qualité de reproduction satisfaisante et profiter de l’amélioration déjà réelle de l’état parodontal.
La cure comprend 8 séances (2 par semaine). Elle se pratique à 40° dans les 3 stades :

- lavage sous aspiration avec un hydropulseur de la totalité des zones dentées en insistant dans les zones intermédiaires ; pression au maximum acceptable ;
- application du gel d’algues pendant 15 minutes ;
- rinçage sous aspiration de la totalité des muqueuses buccales pour éliminer toute trace d’algue.

Les paramètres retenus pour évaluer le bien-faire du traitement sont :

- l’indice parodontal de Russel = I Pa ;
- l’indice gingival de Loe et Silness = I G ;
- l’indice hémorragique sulcalaire de Mühlemann et Son = I Hs ;
- l’indice de plaque de Silness et Loe = I Pl .

Nous avons enfin créé un indice de 1 à 5 que nous appelons de motivation du patient (I.M). Il prend en compte à la fois la satisfaction du patient et l’influence de la cure sur l’amélioration de ses méthodes d’hygiène.

0 = arrêt de la cure ;
1 = insatisfaction, pas de progrès d’hygiène ;
2 = doute et légère amélioration ;
3 = bonne volonté et peu de résultats ;
4 = grande satisfaction, résultats moyens ;
5 = grande satisfaction, résultats excellents .

Discussion

- L’âge moyen est de 53 ans ;
- le rapport hommes/femmes est de 50 p. cent ;
- l’indice parodontal de Russel passe de 3,5 à 2,5 = — 1 ;
- l’indice gingival de Loe et Silness de 2,3 à 1,2 = — 1,1 ;
- l’indice hémorragique sulcalaire de Mühlemann et Son de 3,5 à 1,7 = — 1,8 .

Tous ces indices concordent pour montrer une amélioration notable de l’état parodontal de nos patients.

L’indice de plaque moyen de 2,5 passe à 1,3 montrant la bonne volonté de nos patients mais leur manque de dextérité pour l’élimination de toute leur plaque.

Enfin, l’indice de satisfaction de nos patients est très positif : 3,7 sur 5 .

CONCLUSION

La phytothérapie permet sans grande difficulté d’améliorer l’état buccodentaire de nos patients. Ces algues une fois réhydratées avec de l’eau de mer chaude permettent une macération des éléments放在 la mer au contact du tissu parodontal marginal. Ce contact intime permet de profiter de l’action interne tissulaire de la cure, facteur inutilisé jusqu’alors pour des raisons techniques dans les cures en cabinet dentaire .

La phytothérapie est donc une méthode appelée à un grand développement .

Presse thermale et climatique, 1988, 125, n° 5.
Session 9

Médecine thermale et clinique

Cure thermale de Vals-les-Bains et tolérance glucidique

A. ALLAND *, J.L. CHARBONNIER **, C. RODES *,

(Vals-les-Bains, Montpellier)

Depuis le tout début du XVIIe siècle, l’histoire des eaux de Vals est jalonnée de travaux cliniques puis biologiques signant leur efficacité dans le cadre des maladies de l’appareil digestif en général puis des maladies métaboliques en particulier.

L’orientation spécifique et la spécialisation de cette station dans le diabète se sont progressivement affirmées et il est inutile de rappeler l’action antidiabétique de ces eaux [6, 7, 9, 10]. Depuis deux décennies environ, les différents travaux scientifiques ont confirmé l’action spécifique des eaux de Vals sur le plan du diabète en mettant en évidence d’une part une majoration de l’insulino sécrétion endogène chez les diabétiques non insulinodépendants et d’autre part une plus grande efficacité de cette insulino-sécrétion au niveau périphérique [1, 2, 3, 4, 5].

BUT

Nous avons eu pour but de doser le taux d’acide pyruvique et d’acide lactique chez les diabétiques effectuant une cure thermale à Vals-Les-Bains, les dosages sériques étant effectués au premier et au vingtième jour de la cure.

Notre objectif était de vérifier si une cure de boisson rigoureusement conduite permettait d’obtenir une plus grande efficacité cellulaire de l’insulino sécrétée et d’autre part de pouvoir mieux cerner les nécessaires adaptations de la posologie de cette cure de boissons.

MÉTHODES

Méthodes de dosage

Le dosage de l’acide pyruvique était effectué à l’aide du kit (Rf. 124 982) commercialisé par la société Boehringer Mannheim, les valeurs normales étant de 3,6 à 5,9 mg/l soit 41 à 67 μmol/l.

Le dosage de l’acide lactique était effectué à l’aide du kit commercialisé également par la société Boehringer Mannheim (Rf. : 149 993). Les valeurs normales vont de 57 à 220 mg/l, soit 0,63 à 2,44 μmol/l.

Population étudiée

75 diabétiques ont suivi ce protocole, répartis en 3 sous populations. 42 patients diabétiques ont subi la cure thermale complète à savoir la cure de boissons prescrite selon les normes classiques avec complément des pratiques thermales externes (bains, massages, etc.). 11 patients ont servi de population témoign, c’est-à-dire qu’ils n’ont pas reçu de cure de boissons et ils n’ont reçu que les pratiques thermales externes. 22 patients enfin ont servi de deuxième population témoin, c’est-à-dire qu’ils ont reçu également une cure de boissons synthétique avec dilution de bicarbonate de soude dilué dans de l’eau distillée. La posologie de cette cure de boissons synthétique permettait d’apporter 3 g

* CHS Paul Ribeyre, 07600 VALS-LES-BAINS.
** Centre de Recherches sur le Diabète et les Maladies de la Nutrition, 07600 VALS-LES-BAINS.
*** Faculté de Pharmacie, 34000 MONTPELLIER.

Presse thermale et climatique, 1988, 125, n° 5.
de bicarbonate de soude par jour, en 3 prises de 1 g. Cette posologie de 3 g/jour sera explicitée plus loin dans le travail.

Seuls étaient intégrés dans ce travail les diabétiques traités à l’insuline ou aux sulfamides antibiétiques (les patients traités aux biguanides étant exclus de par les répercussions de ce type de thérapeutique sur la lactacidémie). Enfin, le choix des patients obéissait à une randomisation classique.

RÉSULTATS

Étude générale de la population

L’étude globale de la pyruviciémie et de la lactacidémie des patients recevant une cure thermale complète (cure de boissons et pratique thermale externe) révèle une tendance générale vers la diminution des dosages avec parfois une relative stabilisation.

L’élément prépondérant qui nous a semblé devoir être étudié réside dans l’analyse de la posologie de la cure de boisson ayant permis une amélioration et surtout une diminution des taux sériques.

Cette étude nous a permis de séparer 3 lots de patients, ceux ingérant moins de 1 g de bicarbonate/jour (puisque les eaux de Vals sont des eaux bicarbonatées sodiques), ceux ingérant de 1 à 2 g de bicarbonate/jour et ceux ingérant plus de 3 g de bicarbonate/jour (fig. 1).

L’étude respective de ces populations nous a permis de constater que la différence entre le premier et le vingtième jour du taux d’acide pyruvique et d’acide lactique subsistait une involution croissante en fonction de la dose de bicarbonate ingérée. Plus cette dose était importante et plus la diminution des taux sériques était également sensible.

Ceci se traduisait donc par une implication thérapeutique certaine et nous avons alors groupé notre population en 2 lots de patients selon que ces derniers ingéraient plus ou moins de 1,5 g de bicarbonate/jour. Les résultats sont expliqués dans la figure 2 et l’on voit en particulier une différence non significative des taux sériques entre le début et la fin de la cure lorsque les patients ingéraient moins de 1,5 g de bicarbonate/jour, alors que cette différence est nettement significative dans le lot n° 2 lorsque l’ingestion apporte près de 3 g de bicarbonate/jour. Le taux d’acide pyruvique chute alors de 4,75 mg/l ± 0,45 à 3,95 mg/l ± 0,3 mg/l et le taux d’acide lactique chute de 0,91 mmol/l ± 0,12 à 0,76 mmol/l ± 0,09 mmol/l.

Ces quelques données permettaient d’emblée, de préciser la justification thérapeutique de la cure de boissons et surtout permettaient de préciser la posologie à utiliser.

Il nous a semblé intéressant d’étudier une population particulière à savoir les patients présentant un taux d’acide pyruvique particulièrement élevé à savoir supérieur à 4,5 mg/l.

La figure 3 met en évidence les résultats obtenus, à savoir que tout d’abord, en début de cure, il n’y a pas de différence significative entre les deux populations étudiées à savoir les patients ingérant moins de 1,5 g et les patients ingérant plus de 1,5 g de bicarbonate/jour.

Ces deux populations qui sont identiques en début de cure, sont nettement séparées en fin de cure avec une chute beaucoup plus importante du taux d’acide pyruvique lorsque l’ingestion est supérieure à 1,5 g de bicarbonate/jour. Ce phénomène est très net pour l’évolution de l’acide pyruvique, mais par contre, dans cette population, il n’y a pas de différence significative en fin de cure entre les deux populations, sur le plan du dosage de l’acide lactique.

L’étude de la population de patients présentant un taux d’acide pyruvique de début de cure inférieur à 4,5 mg/l, n’a pas révélé de différence significative, tant en début qu’en fin de cure. Ceci peut s’expliquer par le fait que ces patients ont un taux d’acide pyruvique à la limite inférieure de la normale, et ils ne peuvent en quelque sorte devenir plus « normaux » en fin de séjour. Ceci permet d’emblée de préciser éventuellement, l’indication spécifique de la cure de boissons et de sa posologie, en fonction du taux d’acide pyruvique à l’arrivée dans la station.
Existe-t-il une différence de comportement entre les diabétiques insulino et non-insulino dépendants (DID et DNID) (fig. 4)

Nous avons donc étudié spécifiquement le lot de patients ingérant plus de 1,5 g de bicarbonate/jour et ayant une pyruvicémie de départ supérieure à 4,5 mg/l.

Ce lot de patients a été séparé en 2, à savoir les sujets diabétiques ID et NID.

Les résultats notés dans la figure 4 montrent qu'il n'y a pas de différence significative en début et en fin de cure entre ces deux populations, mais que là encore la chute du taux de pyruvicémie est nettement significative.

Ces deux lots se comportent donc de façon identique vis-à-vis de la cure de boissons.

Etude des populations témoins (fig. 5)

L'étude de la première population témoin comportant 11 patients recevant uniquement les pratiques thermiques externes sans cure de boissons montre que pour ce qui concerne le taux d'acide pyruvique ; le taux reste stable tout au long de la cure avec comme résultat à J1 5,26 mg/l ± 0,56 mg/l et en fin de cure 5,26 mg/l ± 0,43 mg/l.

Pour ce qui concerne le taux d'acide lactique, il y a même une majoration puisque le taux d'acide lactique passe de 0,74 mmol/l ± 0,09 mmol/l à J1 à 0,83 mmol/l ± 0,11 mmol/l à J20.

On peut déduire de ce premier résultat qu'il y a une différence manifeste de comportement induit par la cure de

Presse thermale et climatique, 1988, 725, no 5.
boissons puisque les patients en début et en fin de cure évoluent de façon totalement différente selon que la cure de boissons est ingérée ou non.

Etude de la deuxième population, à savoir 22 diabétiques recevant les pratiques thermales externes et une cure de boisson synthétique. Nous avons déjà souligné que cette cure de boissons synthétique permettait d’apporter 3 g de bicarbonate de soude par jour en 3 prises, et ce afin de nous rapprocher aux mieux des résultats significatifs obtenues lorsque la cure apporte plus de 3 g/jour comme cela a été cité précédemment.

Sur le plan de l’acide pyruvique, nous avons une très légère baisse, mais non significative à savoir que le taux d’acide pyruvique chute de 5,11 mg/l ± 0,54 mg/l à 4,77 mg/l ± 0,47 mg/l.

Sur le plan de l’acide lactique, nous avons le même type d’évolution que dans la population sans cure de boissons puisque le taux d’acide lactique évolue de 0,93 mmol/l ± 0,13 mmol/l jusqu’à 1,02 mmol/l ± 0,13 mmol/l, la différence n’étant pas significative. Il est donc là encore incon- testable qu’une cure de boisson synthétique ne permet pas d’obtenir le même type de résultat qu’avec la cure de bois- son classique et que l’efficacité de cette dernière est donc mise en évidence.

Enfin l’étude statistique montre qu’il y a une différence nettement significative entre les 3 lots de populations à savoir que la première population témoin ne recevant pas de cure de boissons et la deuxième population témoin recevant une cure de boissons synthétique sont toutes deux nettement différentes sur le plan statistique de la population ingérant une cure de boissons au griffon tant sur le plan de l’acide pyruvique que sur le plan de l’acide lactique.

DISCUSSION

Il ressort de ce travail que les résultats qui avaient été observés par M. Uzan, sur la diminution de l’élimination urinaire d’acide pyruvique chez les diabétiques effectuant une cure thermale à Vals-Les-Bains, ont été confirmés par les dosages sériques.

Le présent travail a l’avantage d’apporter une confirmation statistique à cette étude antérieure et apporte un certain nombre de précisions thérapeutique et physiopatholo- giques.

Sur le plan thérapeutique, il est incontestable que la cure de boisson ne doit pas comporter moins de 1,5 g de bicarbonate/jour si l’on veut espérer une réduction notable et significative du taux d’acide pyruvique et d’acide lactique chez nos patients. Il faut rappeler que les sujets présentant un taux d’acide pyruvique inférieur à 4,5 mg/l, taux sérique à la limite inférieure de la normale, n’observent que peu de modifications de leur taux d’acide pyruvique et d’acide lactique, quelle que soit la dose ingérée. Ceci pourrait dans une certaine mesure préciser l’indication de cure chez nos patients diabétiques, mais il conviendrait de compléter ce travail, par l’étude spécifique des glycémies, du taux d’hémoglo- bine glycosylée et du taux de fructosamine chez les diabétiques, mais il conviendrait de compléter ce travail, par

Prose thermale et climatique, 1986, 125, n° 5.
l'étude spécifique des glycémies, du taux d'hémoglobine glycosylée et du taux de fructoseamine chez les diabétiques ayant un taux d'acide pyruvique inférieur à 4,5 mg/l, de manière à pouvoir juger si l'évolution glycémique évolue parallèlement au taux d'acide pyruvique et d'acide lactique.

Il est possible que le taux d'acide pyruvique soit un bon indicateur pour ce qui concerne la posologie de la cure de boissons à apporter, mais ne soit pas un indicateur suffisant pour juger de l'efficacité du traitement thermal sur le plan de la tolérance glucidique proprement dite.

Sur le plan physiopathologique, l'absence de différence de comportement entre les diabétiques insulino- et non insulino-dépendants, permet de confirmer que la cure de boisson est aussi efficace et recommandée dans ces deux populations de diabétiques. L'argumentation classiquement évoquée étant qu'une cure de boisson ne peut interférer efficacement sur une insulino-sécrétion nulle, trouve là une contradiction formelle.

L'expérience prouve donc que même une insuline exogène voit son effet potentielisé par une cure de boissons bien conduite et que l'insuline endogène est tout aussi favorablement influencée dans un sens positif que l'insulinothérapie.

Outre la confirmation de l'action de la cure de boisson prise au griffon sur l'effet périphérique de l'insuline sécrétée ou injectée, le présent travail a le mérite de confirmer que grâce à deux populations témoins, sélectionnées sur une méthode de randomisation classique, une absence de cure de boisson ne permet pas d'obtenir de résultats significatifs et d'autre part une cure de boisson synthétique même bicarbonatée sodique à la posologie théoriquement efficace, n'apporte également aucun changement.

CONCLUSION

Au terme de ce travail, il est confirmé qu'une cure de boisson bien conduite, prise au griffon, et apportant plus de 1,5 g de bicarbonate/jour, favorise efficacement le métabolisme glucosé en favorisant également l'intégration de ce dernier au niveau du cycle de Krebs. Le témoin en est l'évolution du taux d'acide pyruvique et d'acide lactique chez des patients hospitalisés et subissant un bilan au 1er et au 20e jour de leur cure. Les insulino- et les non insulino-dépendants réagissent de la même manière, confirmant que l'insuline endogène est aussi favorablement influencée que l'insuline exogène pour ce qui concerne l'effet périphérique.

Enfin grâce à deux populations témoins étudiées selon une technique de randomisation classique, ce travail confirme que l'absence de cure de boissons ou une cure de boissons synthétique ne donnent aucun résultat.

Spécificité et effets thérapeutiques de la cure thermale de Royat
Aspects expérimentaux - Aspects cliniques

Résumé

G. SCHAFF, R. FABRY, R. DELAHAYE *

(Royat)

L'indication majeure de la thérapeutique thermale de Royat est l'artériopathie des membres, surtout des membres inférieurs. La présence de 24.500 artéritiques par an permet une enquête épidémiologique rigoureuse. Elle s'étend actuellement sur un suivi de six ans.

* Institut de Recherches Cardiovasculaires, 63130 ROYAT.

L'agent thérapeutique est, avant tout, le gaz thermal (99,5 % de CO₂; 0,5 % de N₂, O₂ et divers gaz rares) administré essentiellement par injections sous-cutanées, au niveau des segments de membres ischémiques. Sont pratiqués, d'autre part, des bains de gaz sec et des bains carbogazeux.

Les effets obtenus ont été étudiés sur le plan expérimental, chez l'animal et chez l'homme, ainsi que sur le plan clinique (épreuves fonctionnelles) et sur le plan épidémiologique.
que, à l’Institut de Recherches Cardiovasculaires, fondé en 1946.

On observe, au niveau des régions traitées, une vasodilatation importante, avec augmentation des débits sanguins artériel et veineux (débit nutritionnel et débit global; le débit musculaire et débit cutané), une diminution de la différence artério-veineuse de l’oxygené, une augmentation de la différence artério-veineuse du CO₂.

Cet effet vasodilatateur du CO₂ naturel, facteur « physiologique », est, en intensité et en durée, fonction de la quantité de gaz injectée. Effet purement local, sans recirculation au niveau pulmonaire, donc sans effets généraux, en particulier sans répercussions tensionnelles générales.

L’évolution thérapeutique, fréquemment favorable, de l’artériopathie est confirmée par des explorations fonctionnelles dynamiques portant sur des critères ergométriques (amélioration des périmètres de claudication et de marche totale), vélocimétriques sanguins (effet Doppler et Laser-Doppler), photopléthysmographiques, tensionnels (index de pression), thermographiques, isotopiques, mesure de la pression transcutanée d’oxygené (TcPO₂).

Méthodes récentes d’investigation des effets du traitement thermal de Royat

Résumé

R. FABRY, R. DELAHAYE, G. SCHAFF *

(Royat)

La plupart des artéritiques fréquentant la Station Thermale de Royat présentent une claudication intermittente des membres inférieurs (stade II de Leriche et Fontaine). Pour d’autres, la sévérité de l’atteinte artérielle est responsable de douleurs de décubitus (stade III) et/ou de troubles trophiques (stade IV).

Au stade II, les méthodes d’investigation couramment employées pour apprécier l’effet immédiat du gaz thermal, ou le bénéfice global d’une cure, consistent à apprécier les modifications de courbes vélocimétriques artérielles par effet Doppler et à mesurer les variations des pressions systoliques artérielles distales, tant au repos qu’au décours d’une éprouve de marche sur tapis roulant (épreuve de Strandness). Ces techniques non invasives apportent de précieux renseignements cliniques et hémodynamiques.

Les variations du débit artériel local, sous l’action du gaz, peuvent encore être quantifiées par pléthysmographie (Periflow), ainsi que par scintigraphie musculaire ou thallium 201. La thermographie à cristaux liquides permet d’enregistrer, quant à elle, le réchauffement cutané.

Aux stades III et IV, l’ischémie affecte le secteur cutané, d’étude aisée. Les techniques employées sont alors plus spécifiques des phénomènes hémodynamiques locaux. L’effet du gaz thermal peut alors être analysé, soit par Laser-Doppler, qui enregistre les modifications de la vitesse du déplacement des hématies dans un volume de peau donné, soit par photopléthysmographie qui fournit à l’étude un paramètre pulsé, proportionnel au débit cutané local.

L’ischémie tissulaire perturbe l’activité métabolique et les échanges gazeux. La mesure de la pression transcutanée d’oxygené (TcPO₂) permet alors d’apprécier le degré de sévérité de l’atteinte et les chances de cicatrisation.

Ces diverses méthodes d’investigation sont quotidiennement employées à l’Institut de Recherches Cardiovasculaires de Royat, et permettent, d’une part, d’objectiver l’action « physiologique » du gaz thermal de Royat et, d’autre part, d’apprécier les résultats globaux de la cure, tout en fournissant d’importants renseignements pour un suivi à long terme.

* Institut de Recherches Cardiovasculaires, 63130 ROYAT.
Beeinflussung der essentiellen arteriellen Hypertonie durch nicht-medikamentöse Maßnahmen während einer Kur mit Kohlensäurebädern

B. HARTMANN, U. POHL, D. WOHLMANN, E. BASSENGE *

(Freiburg, Deutschland)

Zur Quantifizierung dieser Wirkungen überprüften wir den Einfluß einer Rehabilitationskur mit diätetischen und passiv physikalischen Maßnahmen (ohne Herz-Kreislauf-Training!) mit Kohlensäurebädern auf den Ruhe- und Belastungsblutdruck bei leichter Hypertonie (Stadium I und II der WHO).

METHODEN

Für diese freiwillige Studie stellten sich Patienten der Breisgau- und Rheintalklinik Bad Krozingen zur Verfügung, die wegen einer Erkrankung am Stütz- und Bewegungsapparat eine Rehabilitationskur durchführten. Ausgewählt wurden Patienten mit der Nebendiagnose milde Hypertonie und dokumentiert erhöhten Blutdruckwerten von diastolisch \(\geq 95 \) mm Hg und altersabhängig systolisch von \(\geq 140 \) bis \(\geq 160 \) mm Hg. In die Studie wurden nur die Patienten mit eindeutiger Ruhe- und/oder Belastungshypertonie aufgenommen. Wir definieren die Ruhehypertonie als Erreichen oder überschreiten obiger Ruheblutdruckwerte während einer Liegephase von mindestens 8 Minuten, die Belastungshypertonie als Erreichen oder überschreiten von 200 mm Hg systolisch und/oder 100 mm Hg diastolisch während einer 6 minütigen Pedalergometrie im Liegen von 30 bis 80 Watt für Frauen und 50 bis 100 Watt für Männer mit minütlicher Steigerung um 10 Watt [4].

Ausgeschlossen wurden Patienten die diese Werte nicht erreichten, Patienten mit sekundärer Hypertonie, kardio-pulmonalen oder Gelenkserkrankungen, die eine Ergometrie unmöglich machten und Einnahme blutdruckbeeinflussender Medikamente in der Zeit bis 3 Monate vor Kurantritt.

Labormessungen

Diese bestanden aus Liegemessungen, einer 5 minütigen aktiven Orthostase, einer anschließenden 3 minütigen Liegephase zur Bestimmung des Entspannungsblutdrucks und zum Abschluß aus einer Pedalergometrie im Liegen (siehe oben).

Untersuchungszeiten waren zu Beginn der Kur (U1), unmittelbar darauffolgenden Werktag (U2), zu Kurmitte (U3) und am Werktag vor Kurende (U4), jeweils zu derselben Tageszeit.

Die Riva-Rocci-Messungen wurden jeweils am rechten Arm in Herzhöhe am Ende jeder Minute durchgeführt. Gleichzeitig erfolgte eine kontinuierliche, nichtinvasive Bestimmung des Fingerarteriendruckes mit der Servo-Plethysmo-Manometrie nach Penaz-Wesseling, die auch die Herzfrequence registriert [8].

Patientenselbstmessungen

Einflussfaktoren

Die Patienten erhielten ein Diät, auf die wir keinen Einfluß hatten. Die Physikalische Therapie war auf das Grundleiden am Stütz- und Bewegungsapparat zentriert.

Zusätzlich badeten die Patienten in thermoneutralem Kohlensäurewasser niederer (500 - 600) oder hoher (1400) Dosierung (jeweils mg CO₂/Liter). Dies während der Kur insgesamt zwölfmal.

Statistik

Für die Veränderungen während der Kur wurde der Zwei-Stichproben-t-Test für paarige Stichproben, für die Follow-up-Phase nach der Kur der Friedman-Test für verbundene Stichproben verwendet.

Presse thermale et climatique, 1988, 125, no 5.
ERGEBNISSE

Von insgesamt 8519 Patienten erfüllten 797 (9,4 %) die Kriterien für die Aufnahmeuntersuchung. In die Studie konnten 427 Patienten aufgenommen werden. In 58 % (von n = 370) war der Ausschlussgrund eine Ruhe- und Belastungsnormotonie während der Erstuntersuchung.

338 Patienten absolvierten alle vier Laboruntersuchungen und erfüllten alle Studienkriterien. Ausscheidungsgründe waren eine medikamentöse antihypertensive Therapie (n = 27), der Widerruf der Einwilligung (n = 41) und akute Erkrankungen (n = 8).

Die Ruheblutdruckwerte und die Herzfrequenz im Liegen vor, noch während und nach 5minütigem aktiven Orthostase zeigt Abbildung 1. Der durchschnittliche Blutdruckabfall zwischen Erst- und Viertuntersuchung ist systolisch 12 und diastolisch 7 mm Hg. Die Abbildung verdeutlicht den Blutdruckabfall bereits zwischen Erst- und Zweituntersuchung, der kein Therapieeffekt ist, sondern durch die Untersuchung bedingt ist, das heißt bei der Erstuntersuchung ist der Blutdruck situationsbedingt erhöht. Beim Vergleich der jeweils niedrigeren Werte bei Erst- oder Zweituntersuchung sinkt der Blutdruck im Mittel systolisch um 4 und diastolisch um 3 mm Hg.

Die Blutdruckwerte während und nach Pedalergometrie im Liegen („Fahradergometrie“) sowie die Herzfrequenz der vier Untersuchungen ist in Abbildung 2 angegeben. Beim Vergleich von Viert- mit Erstuntersuchung fällt auf allen Belastungsstufen und in der Erholungsphase der mittlere systolische Druck um 15 und der diastolische Druck um 7 mm Hg. Bei Vergleich der niedrigeren der beiden Ausgangswerte sinkt der maximale Belastungsblutdruck um systolisch 6 und diastolisch 3 mm Hg.

Die Blutdruckselbstmesswerte in der Nachfachphase, getrennt für die Patienten mit hoher und niedrigerer CO2-Dosierung ist in Abbildung 3 angegeben. In der Kurnachfolgephase findet keine Veränderung des Blutdruckes, das heißt kein Anstieg statt.

DISKUSSION

Presse thermale et climatique, 1988, 125, n° 5.

Presso thermale et climatique, 1988, 125, n° 5.

Wegen der unterschiedlichen Thermoindifferenz konnten wir uns zu Studienbeginn nicht entscheiden, als Kontrollgruppe Süßwasserbäder zu applizieren, aus methodischen Gründen war auch eine Kontrollgruppe, die keine Bäder erhielt, nicht möglich.

Hier zeigt sich exemplarisch das Problem der balneologischen Forschung, da sich während einer Kur mehrere Parameter ändern, die nicht auseinanderzudifferenzieren sind.

Wir konnten eindeutig einen Kureffekt auf Ruhe- und Belastungsblutdruck nachweisen, der über ein Jahr nach Kur anhielt.

Dabei legten wir großen Wert auf die Meßgenauigkeit der Untersucher, die in regelmäßigen simultanen Doppelmessungen auf Meßgenauigkeit überprüft wurden. Dieselbe Sorgfalt wandten wir für die Patienten- selbstmessungen an, wobei die Patienten individuell angeleitet und durch mindestens 20 simultane Kontrolmessungen auf ihre Meßgenauigkeit überprüft wurden. Ein wesentlicher Einflussfaktor könnte auch diese Aufklärung und Selbstmessung sein, da dadurch eindeutig auch die Compliance gefördert wird.

In einer Kur kann insgesamt druk nicht-medicamentöse Maßnahmen der erhöhte Blutdruck bei geeigneten Patienten gesenkt werden. Gerade eine Kur bietet sich dabei an, diese Therapie einzuleiten und zu überwachen und gleichzeitig die Patienten zu motivieren, diese rationalen und effektiven Maßnahmen dann in ihr alltägliches Leben zu integrieren.

ZUSAMMENFASSUNG

LITERATUR

Etude radiographique de la remontée colique
du goutte-à-goutte intestinal de Châtelguyon
Intérêt diagnostique et thérapeutique

J.B. CHAREYRAS, M. GUALINO *

(Châtelguyon)

Le goutte-à-goutte intestinal est une technique thermale couramment utilisée à Châtelguyon dans le traitement de certaines colites (notamment diverticales) et dans les troubles du transit des colopathies fonctionnelles. Il permet d’introduire directement l’eau thermale dans la lumière colique par voie rectale [1].

Devant la méconnaissance de la progression exacte de ce goutte-à-goutte dans le côlon, il nous a paru intéressant de vérifier radiologiquement cette progression et d’en situer le niveau dans le côlon.

Pour ce faire, un produit de contraste (Radioelectan) parfaitement miscible à l’eau a été choisi. Le mélange obtenu est opaque aux rayons X. La simple lecture d’une radiographie de l’abdomen pratiquée en décubitus dorsal 1 heure 30
après la fin du goutte-à-goutte permet alors de visualiser le rayon d’action de cette technique dans le colon.

HISTORIQUE

C’est à partir de 1911 que le Docteur J. Baumann mit au point la technique du goutte-à-goutte intestinal pour remplacer le grand lavage d’intestin, tel qu’on le pratiquait auparavant à Châtelguyon [1].

Il avait déjà constaté cliniquement la progression rétrograde de ce goutte-à-goutte jusqu’au caecum.

RAPPEL D’HYDROLOGIE

Caractéristiques des eaux thermales de Châtelguyon [2]

Elles sont carbo-gazeuses, chlor bicarbonatées, sodiques, calciques et magnésiennes. Leur minéralisation totale s’échelonne entre 1,6 g/l et 7 g/l. La particularité de ces eaux réside dans leur teneur élevée en magnésium (16,46 mmol/l, soit 400 mg/l). Leur température d’émergence se situe entre 21 °C et 36 °C. On note également la présence de fer, de silice, et de nombreux oligo-éléments (Li, Cu, Zn, Mn...).

Propriétés

Différents travaux ont montré l’action des eaux thermales de Châtelguyon :
— sur le temps de transit intestinal (effet régulateur) [4] ;
— sur le contenu colique et l’écosystème bactérien (effet antiseptique) [5] ;
— sur le métabolisme général (recharge significative du magnésium plasmatique et érythrocytaire) [3].

Leur action de pansement direct vis-à-vis de la muqueuse digestive découle de leurs propriétés incrustantes, c’est-à-dire de leur très grande facilité à déposer, en particulier le complexe silico-aluminique qu’elles contiennent.

MATÉRIEL ET MÉTHODE

Deux équipes ont travaillé à cette étude :
— l’une à l’Hôpital Foch, Service de radiologie du Docteur J.D. Picard ;
— l’autre à Châtelguyon avec le concours de la Société des Médecins de la station.

Matériel

Deux types de matériel ont servi à l’expérimentation.
— A Châtelguyon, les établissements thermaux sont équipés d’appareils de goutte-à-goutte conçus à cet effet. Boc en hauteur (60 cm) recevant l’eau thermale ; par gravité l’eau descend dans la tubulure interrompue par un styligoutte qui règle le débit et par un branchement en Y anti-reflux. A chaque nouvelle opération le boc est stérilisé à la vapeur et les canalisations changées (tubulures à usage unique).
— A l’Hôpital Foch, on a utilisé, au lit du malade, une poche à perfusion munie d’une tubulure dont on pouvait facilement régler le débit.

Méthode

24 sujets ont participé à ce travail : 10 à l’Hôpital Foch (malades hospitalisés du service de chirurgie digestive), 14 à Châtelguyon (curistes ambulatoires).

Technique

Une même technique, celle de la station, a servi de base à la réalisation des différents goutte-à-gouttes coliques. Son principe est le suivant : chez le sujet allongé, on instille par voie rectale 200 ml d’eau thermale en 1/2 heure (80 gouttes/min.). Celui-ci conserve le goutte-à-goutte 2 heures au moins, sans mobilisation active. Le malade reste allongé (malade hospitalisé) ou bien vautre à ses occupations (curiste de Châtelguyon). Ce laps de temps permet d’établir un contact prolongé entre l’eau et la muqueuse.

Dans notre expérimentation, les clichés ont tous été pris 1 heure 30 après la fin du goutte-à-goutte (dans 3 cas, un deuxième cliché a été pris après un délai de 4 heures 30).

Utilisation du produit de contraste

Pour permettre l’opacification de l’eau du goutte-à-goutte, un produit de contraste tri-iodé, hydrosoluble, à usage uro-angio graphique a été rajouté au support : le Radioseléctan à 76 p. cent. Ce produit de contraste a été dilué dans de l’eau thermale à Châtelguyon et dans de l’eau stérile à l’Hôpital Foch.

TOLÉRANCE

A Châtelguyon, 40.000 goutte-à-gouttes sont réalisés chaque année et le problème de la tolérance, ne se pose plus lorsque l’indication de ce traitement est bien posée.

A l’Hôpital Foch, la tolérance chez les 10 patients soumis à cette technique n’a posé aucun problème. On n’a constaté aucune douleur abdominale ni aucun rejet du goutte-à-goutte avant la radiographie.

RÉSULTATS

Les résultats sont donnés dans le tableau I.

<table>
<thead>
<tr>
<th>Niveau</th>
<th>Série Hôp. Foch</th>
<th>Série Châtelguyon</th>
<th>Total</th>
<th>Pourcentage</th>
</tr>
</thead>
<tbody>
<tr>
<td>Opacification totale jusqu’au caecum</td>
<td>7</td>
<td>1</td>
<td>8</td>
<td>33,3 %</td>
</tr>
<tr>
<td>Opacification atteint ou dépasse l’angle droit</td>
<td>1</td>
<td>2</td>
<td>3</td>
<td>12,5 %</td>
</tr>
<tr>
<td>Opacification atteint ou dépasse l’angle gauche</td>
<td>2</td>
<td>7</td>
<td>9</td>
<td>37,5 %</td>
</tr>
<tr>
<td>Opacification du recto-sigmoidé</td>
<td>0</td>
<td>4</td>
<td>4</td>
<td>16,7 %</td>
</tr>
</tbody>
</table>

Presser thermale et climatique, 1988, 125, no 5.
DISCUSSION

On peut vérifier dans cette étude que l’eau thermale instillée goutte-à-goutte par voie rectale atteint ou dépasse l’angle colique gauche dans 83 p. cent des cas et qu’elle dépasse l’angle colique droit dans plus de 45 p. cent des cas. Une fois sur trois, l’eau thermale gagne le caecum.

Dans près de 17 p. cent des cas, l’opacification ne dépasse pas le recto-sigmoïde. On peut noter qu’il s’agit alors de maladies (colopathies fonctionnelles) porteurs d’un très important dolico-côlon. L’anatomie colique et le degré d’encombrement intestinal semblent jouer un rôle.

INTÉRÊT DIAGNOSTIQUE

Sur le plan radiographique, on met en évidence la possibilité d’opacifier tout ou partie du côlon par une technique peu aggressive, bien tolérée, réalisable ou l’utilisation de radiopaque sans aucun préparation. Ceci permet un certain nombre de diagnostics en urgence, surtout dans les cas d’occlusion intestinale, de colites diverticulaires...

INTÉRÊT THÉRAPEUTIQUE

Thermole

La mise en évidence de la remontée colique du goutte-à-goutte intestinal revêt sur le plan crénothérapique un grand intérêt. L’eau minérale de Châtelguyon, particulièrement riche en magnésium, constitue le médicament thermal sur lequel repose avant tout les résultats de la cure.

Le goutte-à-goutte réalise bien une crénothérapie spécifique du côlon (intérêt dans les sigmoidites diverticulaires, l’eau thermale atteignant dans 83 p. cent des cas l’angle colique gauche).

Thérapeutique générale

Par ailleurs, les résultats de cette étude débordent le cadre purement thermal car on met en évidence le rayon d’action du côlon que peuvent avoir certains médicaments introduits sous forme liquide par voie rectale (type lavements corticoïdes, salazopyrine ou autres) utilisés couramment des indications de colites telles les recto-colites hémorragiques, les colites post-radiques...

REFERENCES

Kurerhandlung der Gastritis chronica erosiva
Engesichis Verlangerter Observationen

L. HRYNIEWSKI, C. STRABURZYSKI, K. LINKE *

(Poznan, Polen)

Zweck der dargestellten Arbeiten war die Effektbewertung der Kurerhandlung der Gastritis Chronica Erosiva mit Hilfe der HiAlO-State-Trinkkuren »Wieka Pieniawa« (Hydrogen-Kalkkarbonatsäure) verbunden mit milder Klimakure in Kurort Polanica, Grundlage dieser Bewertung war die Analyse über den Einfluss einer solchen Therapie auf die objektiven und subjektiven Symptome sowie das Endoskopbild, und auch die Bestimmung fernliegender Behandlungs-ergebnisse durch prospektive Observationen zweier Patientengruppen, wovon eine im Kurort behandelt, und die andere nicht kurbehandelt wurde, im Laufe von 1 - 3 Jahren.

* Kurmedizinischen Institut der Direktor, Prof. Dr. hab. G. Strabuszyński sowie von der Gastroenterologischen Klinik der Medizinischen Akademie in Poznan der Lektor, Prof. Dr. hab. J. Haslik.

Presso thermale et climatique, 1988, 125, n° 5.
MATERIAL UND METHODIK

Die Untersuchungen wurden an zwei Gruppen von Pa-
tienten vorgenommen, bei welchen aufgrund des Endoskop-
und klinischen Bildes Gastritis Chronica Erosiva diagnosti-
ziert wurde. Die erste Gruppe umfaßte 71 Patienten bei-
derlei Geschlechts im Alter von 18 bis 59 Jahren (Durch-
schnittsalter 46 Jahre), davon 37 Frauen und 34 Männer. Die zweite Gruppe umfaßte 35 Patienten im Alter von 22
bis 59 Jahren (Durchschnittsalter 43 Jahre). Alle, zur ersten Gruppe zählenden Patienten wurden während 24
Tagen im Kurort Polanica mit Heilquelle-Trinkkur »Wielka
Pieniawa«, u. zw. 3 X täglich 200 ml 30 Minuten vor
den Mahlzeiten, behandelt. Während großer Schmerz-
steigerung erhielten sie neutralisierende und diastolische
Medikamente. Gleichzeitig wurde Diät angewandt.

Die Patienten mit Gastritis Chronica Erosiva der zweiten
Gruppe, der sog. Kontrollgruppe, wurden keiner Kurbef-
handlung unterzogen, und erhielten lediglich in ambulan-
ten Bedingungen neutralisierende Medikamente, Anticholi-
nnergica sowie Metoclopramid. Während den Untersuchun-
gen wurde bei allen Patienten schonende Diät angewandt,
wobei jene Nahrung ausgeschlossen wurde, die die Schleim-
häute des Magens reizt und die Sekretion der Magensäfte
anregt. Die Observation der Patienten beider- Gruppen
dauerte 1 - 3 Jahre.

ERGEBNISSE UND DEREN ERKRÄRUNG

Entsprechend den angeführten Daten gehörten zu den
defhängigsten objektiven Symptomen vor der Behandlung,
im Bezug auf die Frequenz des Auftretens, der Reihe nach:
tags und nachts Schmerzen im Oberbauch, Blähungen, Sod-
brennen, leeres und saures Aufstoßen sowie nächtliche,
im Oberbauch lokalisierte Schmerzen. Bei weniger als 1/3 der
Fälle wurden auch Übelkeit und Erbrechen, Stuhlerstüftung
sowie dünner Stuhl beobachtet. Nach 24-tägiger Behandlung
im Kurort wurde fast bei allen Patienten das Zurückgehen
dieser Symptome oder eine deutliche Intensitätsverminderung
festgestellt. Bei der Kontrollgruppe, die während der glei-
chen Zeitspanne ambulant behandelt wurde, wurde ein etwas
geringeres Prozentsatz von Patienten, bei welchen die Sympt-
rome zurückgegangen sind, oder sich deutlich vermindert
haben, beobachtet.

Nach der Kurbewandlung wurde bei 58 % der Patienten
im Endoskopbild eine Regression der Erosionen, und bei
39 % der Patienten eine Verkleinerung derselben festge-
stellt. Es wurde ebenfalls das Zurückgehen oder eine
Verminderung des Druckschmerzes im Oberbauch bei 39 %
der Patienten konstatiert. Dieses wesentliche Symptom ist
vor Beginn der Therapie bei 55 % der Untersuchten auf-
getreten. Die vor der Behandlung beobachteten Blutungen
sind ebenfalls bei 12 % der Patienten zurückgegangen.

Vor der Therapie wurde eine erhöhte Aktivität der mit
Hilfe der Kay-Probe mit maximalem Histaminreiz bestim-
men Magensekretion bei 39 % (BAO) und 42 % (MAO)
festgestellt. Nach Ablauf der Kurbewandlung betrug der
Prozentsatz von Patienten mit normaler Elementarsekretion
ca 90 %. Bei der Untergruppe von Patienten mit Hyper-
azidität wurde eine statistisch signifikante Verminderung
der Elementarsekretion von Wasserstoffionen von 6.3 mM/
h auf 4.0 mM/h, sowie eine maximale Sekretion von
30.8 mM/h auf 18.1 mM/h festgestellt.

Nach einer 24-tägigen pharmacologischen ambulanten
Behandlung der Patienten der Kontrollgruppe wurden sehr
ähnliche Ergebnisse wie bei der ersten Gruppe von Patien-
ten nach der Kurbewandlung festgestellt. Durch Endosko-
puntersuchung wurde nämlich bei 36 % der Patienten eine
Verkleinerung der Erosion und bei 60 % ein Zurückgehen
der jeder festgestellt. Bei 34 % der Patienten wurde ferner
Zurückgehen oder Verminderung der Druckschmerzen im
Oberbauch sowie Ausbleiben der vor der Behandlung bei
15 % der Patienten dieser Gruppe aufgetretenen Blutun-
gen, festgestellt. Vor der ambulanten Behandlung wurde
bei der Kontrollgruppe eine erhöhte sekretorische Aktivität
des Magens bei 36 % (BAO) und 44 % (MAO) der Patien-
ten, nach der ambulanten Behandlung eine normale oder
verminderte sekretorische Aktivität des Magens bei 86 %
(BAO) und 96 % (MAO) der Patienten, festgestellt. Bei
Patienten mit Hyperazidität wurde eine statistisch signifi-
kante Verminderung der sekretorischen Aktivität des Ma-
gens festgestellt.

Die prospektive Beobachtung zweier Patientengruppen:
die erste im Kurort, und die zweite ausschließlich ambu-
lat im Wohnort behandelt, hat erwiesen, daß im Laufe
 eines Jahres bei den im Kurort behandelten Patienten der
Prozentsatz von Rückfällen 21 % und Blutungen 1,8 %,
hingegen bei der Gruppe der ausschließlich pharmakolo-
gisch Behandelten entsprechend 54 % und 14 % betru-
gen. Diese Differenzen, durch Chi²-Test verifiziert, erwiesen
einen signifikanten Einfluß der Kurbewandlung auf die
Verminderung des Auftretens von Rückfällen und Blutun-
gen. Bei der ersten Gruppe wurde auch kein Auftreten der
Ulkusneisse festgestellt. Bei der zweiten Gruppe hingegen
wurde das Auftreten der Ulkusneisse des Magens oder
Zwölffingerarms nochgewiesen. Im Laufe des 2. oder 3.
Jahres war die Anzahl von Rückfällen, Blutungen und Ulkuskomplikationen bei beiden Gruppen ähnlich. Die
wahrgekommenen kleinen Differenzen waren statistisch
nicht signifikant.

Diese Daten beweisen, daß eine mit Trinkkur verbundene
Kurbewandlung in einem etwas höherem Grad auf das
Zurückgehen der objektiven und subjektiven Symptome der
Gastritis Chronica Erosiva einwirkt, als die ausschließlich
ambulante Behandlung im Wohnort des Patienten; aller-
dings beschränkt die Kurbewandlung die Frequenz der
Rückfälle nur für die Dauer eines Jahres.

Die erzielten Ergebnisse deuten auf die Zweckmäßigkeit
der Behandlung der Gastritis Chronica Erosiva im Kurort
Polanica, und beweisen die Notwendigkeit einer alljährli-
den Wiederholung der Kurbewandlung dieser Patienten.

FOLGERUNGEN

1) Die unmittelbaren Ergebnisse der Kurbewandlung bei
Gastritis Chronica Erosiva im Kurort aufgrund einer Heilquelle- Trinkkur »Wielka Pieniawa« sind denen bei
der ambulant im Wohnort während der gleichen Zeitspanne
pharmakologisch behandelten Kontrollgruppe erzielt sehr
ähnlich.

2) Bei der Gruppe der im Kurort behandelten Patienten
wurde jedoch, im Vergleich zu der pharmakologisch nur in
ambulanten Verhältnissen behandelten Gruppe, ein statis-
tisch signifikant niedrigerer Prozentsatz an Rückfällen,
Blutungen sowie Ulkuskomplikationen im ersten Jahr nach
Beendigung der Kurbewandlung, festgestellt.

Presse thermale et climatique, 1988, 125, n° 5.
3) Die erzielten Ergebnisse deuten auf die Zweckmäßigkei
t einer Kurbehandlung von Gastritis Chronica Erosiva in
Polanica, unter Anwendung einer Trinkkur mit Hydrogen-
karbonatsäuerung "Wielka Pieniawa", und beweisen ferner die Notwendigkeit einer prophylaktischen, alljährlichen Wiederholung der Kurbehandlung.

Methodik

Die im Kurort Polanica behandelte Gruppe
— 24-tägiger Aufenthalt im Kurort
— Trinkkur: Wielka Pieniawa 3 × täglich 200 ml 30
Minuten vor den Mahlzeiten,
— sog.leichte Diät,
— im Falle einer großen Schmerzsteigerung: Antiacidum,
Anticholinergica.

Die nicht kurortlich behandelte Kontrollgruppe
Ambulante Behandlung: leichte Diät sowie pharmako-
logische Mittel: Antiacidum, Anticholinergica, Meelex Me-
toclomprimid, Beruhigungsmittel. 1

Beobachtungsdauer: 1 bis 3 Jahre

Material

71 Patienten beiderlei Geschlechts, bei welchen aufgrund von klinischen — und endoskopischen Untersuchungen

Gastritis Chronica Erosiva nach Roesch diagnostiziert wurde, im Alter von 18 bis 59 Jahren (Durchschnittsalter 46 ± 12 Jahre), davon 37 Frauen und 34 Männer.

Bei prospektiven Untersuchungen wurde die Kontrollgruppe durch 35 Patienten im Alter von 22 bis 59 Jahren (Durchschnittsalter 43 ± 10 Jahre) gebildet, bei welchen eine konventionelle pharmakologische Therapie angewandt wurde.

FOLGERUNGEN

1) Eine 24-tägige Trinkkur "Wielka Pieniawa", Bal-
neotherapie sowie Klimabehandlung verursachen bei 55 %
der Patienten mit Gastritis Chronica Erosiva das Zurückgehen, und bei 23 % eine Verkleinerung der Erosion sowie beim Großteil der Patienten Zurückgehen oder Besserung der objektiven und subjektiven Symptome.

2) Durch Behandlung im Kurort Polanica werden die erhöhten Werte der elementaren — und maximalen Magen — sekretion bei Patienten mit Gastritis Chronica Erosiva gesenkt.

3) Bei der kurortlich behandelten Gruppe von Patienten wurde im Vergleich zu der ambulant mit pharmakologi-
schen Mitteln behandelten Gruppe ein statistisch signifi-
kant niedrigerer Frozensatz an Rückfällen, Blutungen sowie Auftreten der Ulkusnische konstatiert.

Traitement à Royat des plaies d'origine vasculaire :
Essai d'interprétation des résultats

Résumé

P.3. AVRIL, J.J. DUBOST, J.L. MERLE, J. BODY *

(Royat)

Dans un précédent travail, l’évolution à court terme de
20 malades présentant des plaies à participation vasculaire
a été analysée et la méthode des « douches de gaz ther-
maux » en atmosphère oxygénée décrite comme méthode
complémentaire à la cure thermale de Royat.

Parallèlement, l’étude à l’Institut de Recherches Cardio-
vasculaires de Royat de l’effet de l’injection de gaz au dos
du pied, évaluée par le TCT O2 et le Laser Doppler, a montré
chez l’artérique une augmentation du débit cutané nutri-
tionnel, significative pendant 15 à 35 minutes (TCT O2
avec une augmentation du débit cutané global (Laser Dop-
ppler), concomitante mais plus prolongée: la répartition de
l’effet vasodilatateur semble se faire d’autant plus au profit de
la circulation nutritionnelle que l’état artériel est altéré,
et l’effet vasodilatateur est plus prolongé chez l’artérique
t et ceci d’autant plus que l’artériopathie est sévère. On peut
donc tenter d’expliquer les résultats cliniques par l’hypothèse
que le gaz thermal peut agir sur la phase « préparative »
or première phase de la cicatrisation, en favorisant d’une
part la vasodilatation des vaisseaux et de l’affect des poly-
nucléaires, et d’autre part le développement de néo-vaisscaux
au contact de la plaie, le tout en atmosphère oxygénée.

* Institut de Recherches cardiovasculaires, 63130 ROYAT.
Session 10
L'utilisation de l'informatique en médecine thermale

Principes de méthodologie de l'essai thérapeutique en médecine thermale : le dossier médical informatisé et l'analyse statistique des résultats

C. DELBOY *, R. BARTOLIN **
(Marseille)

BUT DU TRAVAIL

Bien que l'une des thérapeutiques les plus anciennement connues et largement appliquées depuis toujours, le thermalisme souffre encore actuellement des préjugés de nombreux confrères, et non des moindres, spécialistes ou fondamentalistes, et ce, malgré des travaux expérimentaux rigoureux mais déjà anciens. Face au scepticisme de ceux-là mêmes qui prônent les méthodes modernes de l'essai thérapeutique contrôlé, largement développé par l'Ecole Française de Statistiques Bio-Médicales, il est apparu nécessaire de rechercher par des études scientifiques fiables des éléments susceptibles de prouver son efficacité et sa rentabilité : étayer la crédibilité du thermalisme, tel est le but de ces travaux.

Il s'agit de développer une méthodologie d'essais cliniques avec analyse statistique prospective d'un grand nombre de dossiers, au moyen d'observations médicales suffisamment détaillées pour être exploitables, rigoureusement comparables pour être traitées automatiquement, et donc facilement « informatisables ». Ainsi est née la structure du dossier type devant être colligé avant, pendant et après la cure : le dossier médical informatisé applicable en crénotherapie.

Ce dossier est le fruit de la réflexion d'une équipe pluri-disciplinaire, issue de la collaboration étroite entre, d'une part des médecins thermalistes : phlébologues, rhumatologues, rééducateurs, ORL, dermatologues, urologues et gastro-entérologues, hommes de « terrain », œuvrant au sein des stations thermales, et, d'autre part, des médecins universitaires : hydrologues, internistes et spécialistes, biostatisticiens... de la faculté de Médecine de Marseille. En effet, la participation étroite du médecin thermaliste à l'élaboration du dossier est l'une des conditions « clefs » pour la mise en application réelle de celui-ci.

Il faut souligner d'embâlée trois impératifs qui ont présidé à la mise en œuvre de cet essai.

Sauvegarde absolue du secret médical

— par le strict anonymat du dossier : en effet, aucune information susceptible de permettre de retrouver un malade ne figure de façon explicite : ni le nom, ni l'adresse, ni le numéro de l'INSEE... seuls le sexe et l'année de naissance ; ainsi l'équipe de biostatisticiens qui traitera l'information n'aura pas d'accès direct à l'individu « fiché ».
— Par un système de triple codage confidentiel : codage de la station, du médecin thermaliste et du malade.

Seul le médecin thermaliste possède la clef du code « malade » et peut donc éventuellement le contacter... mais, en tant que médecin, il est tenu au secret médical vis-à-vis du centre de traitement ; il peut cependant, à l'inverse, faire bénéficier son malade des résultats de l'essai.

Respect intégral des règles déontologiques

— En tout état de cause, le dossier demeure la propriété exclusive du médecin thermaliste, seul responsable de l'orientation vers l'exploitation : en confrontation avec les contraintes méthodologiques de l'essai, il pourra décider, en conscience, des malades admis pour l'analyse.

— Après mémorisation « ordinateur » des données, chaque médecin thermaliste possédant sa clef personnelle d'accès, pourra librement accéder au fichier de ses patients, mais exclusivement des siens et avec plusieurs niveaux de protection contre les « indiscrétions ».

Respect rigoureux de la loi informatique et libertés

— Par l'accord préalable du Conseil de l'Ordre des Médecins de chacun des départements concernés.

— Par l'information préalable, et par écrit, de chaque curiste ; cette information figure sur le dossier tel qu'il est remis au curiste lors du premier questionnaire avec toutes les garanties législatives qui en résultent.

Nous allons étudier trois aspects spécifiques de cette expérience :

— les contraintes méthodologiques ;

— la structure du dossier informatisé ;

— l'analyse de quelques résultats statistiques à titre d'illustration des performances obtenues.

CONTRAINTE MÉTHODOLOGIQUES

Principe de l'essai thérapeutique

Les modalités mêmes de la crénothérapie excluent, en principe, l'emploi de placebos et le recours au double aveugle, la constitution de lots « témoins » comparables est très difficile à réaliser en pratique (elle sera réalisable lors de vastes enquêtes multicentriques, non encore développées pour l'instant, à condition de définir rigoureusement les critères d'inclusion, les critères d'appréciation, au sein d'une sous-population de malades le plus comparable possible et parmi des médecins traitants « de référence » acceptant de participer à l'essai avec des thérapeutiques normales).

En définitive, nous avons eu recours à la méthode des séries appariées : le malade est son propre témoin. Les tests utilisés seront : le test de « t » de Student des différences (pour les variables continues), le test de Wilcoxon (pour les variables codées) et le test de Chi² (pour les variables en classe), associés, bien entendu, aux analyses descriptives traditionnelles : histogramme, tris croisés, entre autres.

A noter, dans une telle perspective, et pour limiter les biais constitutionnels, qu'il est indispensable de définir rigoureusement l'état pathologique initial, afin de créer des sous-groupes homogènes sans quoi toute comparaison inter-groupe risquerait d'être faussée par une trop grande variabilité.

Ainsi, il convient d'éliminer si possible toute pathologie mal déterminée, toute pathologie intercurrente, et les associations trop complexes (justiciables d'une analyse multivariée).

De même, se pose le problème du nombre de dossiers remplis par chaque médecin thermaliste : en cas de trop grande distorsion risquerait d'être introduite une contrainte dite de spécialisation ou de « clientèle ». Si l'enquête exhaustive est impossible, un certain degré de randomisation permettrait de limiter cette contrainte.

Choix des critères d'évolution

Nous avons pris en considération des paramètres « mesurables », donc les plus objectifs possibles, tels l'amplitude articulaire, la consommation médicamenteuse, l'absentéisme professionnel, mais sans négliger des éléments plus subjectifs, fournis par le curiste, seul véritable juge de son confort santé, telles l'insensibilité d'une douleur, la qualité du sommeil, la limitation de la locomotion... le traitement statistique actuel permet, en effet, d'utiliser, avec une relative fiabilité, simultanément ces deux approches comme d'ailleurs dans l'essai thérapeutique médicamenteux habituel.

Contraintes de forme

Elles furent imposées par le système d'informatisation : il s'agit du système SYCVAR, de gestion et d'exploitation des dossiers médicaux, conçu par l'équipe du Service d'informatique de la faculté de Médecine de Marseille.

Ce système implanté sur un ordinateur Mini 6 Bull, est accessible à partir de Minitels ou de terminaux reliés par ligne PTT (Réseau Transpac) avec Modem de décodage, terminaux dont certains furent directement installés au sein des Etablissements thermaux, facilitant au maximum les problèmes logistiques du transfert de l'information. La mise en place du « support papier » constituant le « dossier type » devrait répondre à quatre exigences :

— clarté de présentation ;

— rapidité d'exécution (environ 20 min) ;

— pertinence sémantique ;

— facilité d'information.

Ces objectifs furent réalisés grâce à la participation active des médecins thermalistes pour les différentes disciplines et dans chaque station.

STRUCTURE DU DOSSIER MÉDICAL INFORMATISÉ

Le dossier comporte deux parties distinctes selon le potentiel d'évolubilité de l'information contenue.

La base renferme des informations stables et en principe définitives, qui ne seront donc inscrites qu'une seule fois : il s'agit de l'état civil (sexé et année de naissance) et des antécédents médicaux détaillés personnels et familiaux, ainsi que du « passé » thermal du curiste.

Les satellites recèlent des informations pouvant varier d'une saison à l'autre, donc changeantes et/ou répétitives qui seront transfertées à chaque cure sous forme d'occurrences nouvelles.

— Le premier satellite est un questionnaire individuel pouvant être rempli par le curiste lui-même à chaque nouvelle cure : évolution de la situation socioprofessionnelle, modification de l'état de santé, consommation médicamenteuse,
utilisation de l'informatique en médecine thermale
377
absentéisme professionnel depuis la dernière cure, motivation
personnelle pour entreprendre une nouvelle cure...
— Le deuxième satellite relate l'évolutivité de la maladie
et des autres traitements suivis entre deux cures.
— Le troisième satellite précise les techniques de cure
prescrites par le médecin thermaliste à l'occasion de la
nouvelle cure.
— Le quatrième satellite concerne l'observation clinique
proprement dite. Dans un souci de restreindre au maximum le
volume du dossier médical (condition exigée pour la partici-
pation spontanée du médecin thermaliste à l'essai thérapeu-
tique) nous avons préféré introduire une spécialisation de
echaque satellite en fonction des indications habituelles des
cures dans les stations étudiées.

Un certain nombre de spécialités médicales intéressant
directement le Thermalisme, ont pu déjà être étudiées à ce
journier.
C'est le cas du dossier informatisé de :
— ORL et voies respiratoires supérieures ;
— rhumatologie et rééducation fonctionnelle ;
— phlébologie ;
— dermatologie.
Ainsi pour le dossier ORL, existe-t-il quatre satellites
spécialisés :
— fosses nasales et sinus ;
— oropharynx ;
— larynx et trachéo-bronchique ;
— oreilles et otologie (impédancemétrie).
De même pour le dossier rhumatologie il existe neuf sa-
tellites spécialisés :
— cervicalgies ;
— lombalgies et lombo-sciatiques ;
— gonarthrose ;
— coxarthrose ;
— spondyarthrite ankylosante ;
— affections distales des membres supérieurs et doigts ;
— affections distales des membres inférieurs ;
— périarthrite scapulo-humérale ;
— effets secondaires de la cure ;
— algodystrophies.
Le dossier phlébologique a été scindé en :
— insuffisance veineuse et varices ;
— phlébites aigus demi récentes et séquelles ;
— lésions cutanées d'origine veineuse des membres infé-
rieurs.
La dermatologie comporte trois satellites :
— psoriasis ;
— eczéma atopique ;
— cicatrices hypertrophiques.
Actuellement, chaque satellite comporte une moyenne de
300 items, mais la tendance est à une diminution très sen-
sible du nombre de ces informations et plutôt à remplacer
les satellites trop importants par plusieurs satellites plus
petits, plus ponctuels et mieux adaptés au problème spéci-
fique à étudier.
Bien entendu, pour un malade, ne sera collé que le
satellite correspondant à l'expression semiologique prédomi-
nante ayant motivé l'indication principale de la cure... en
évitant d'inclure dans l'essai des pathologies trop intriquées

structure fine des satellites
Chaque satellite spécialisé comporte cinq parties :
La fiche de bilan clinique initial à remplir par le médecin
thermaliste lors de la « visite d'arrivée », c'est-à-dire en
principe avant le début de la cure ; elle est assez détaillée
et concerne :
— les signes fonctionnels (caractère de la douleur, impo-
tence...) ;
— les signes généraux (trophicité, sommeil, asthénie...) ;
— l'examen physique précis (troubles statiques, mesures
dynamiques) ;
— et notamment la recherche active des contre-indica-
tions éventuelles à la cure.
Le bilan paraclinique : résultats du dossier radiologique,
biologique, électrique fourni par le curiste.
La fiche de bilan à « mi-cure » qui appréhende plus parti-
culièrement :
— la tolérance de la cure : recherche de réactions éven-
tuelles, de la survenue de la crise thermale ;
— l'évolution de la symptomatologie (douleur, gène fonc-
tionnelle), de la consommation médicamenteuse par rapport
d'à l'arrivée, de l'état général.
La fiche de bilan de fin de cure qui reprend les données
 principales de la fiche remplie lors de la première consulta-
tion et permet ainsi une appréciation globale et immédiate de
l'efficacité de la cure (impressions du curiste et du médecin
thermaliste).
Enfin une fiche de bilan post-cure qui constitue une fiche
de liaison avec le médecin traitant. Elle est remise au curiste
lors de la dernière consultation. Elle sera remplie conjointe-
ment par le curiste et le médecin traitant dans un délai de
3 à 6 mois après la fin de la cure, et permet ainsi de juger de
l'efficacité à moyen terme. Cette fiche est intéressante et
peut-être présente-t-elle plus d'objectivité, car remplie par
un médecin extérieur au thermalisme.
Cette architecture permet à la fois les enquêtes horizon-
tales de nature épidémiologique et des enquêtes verticales
et prospectives sur un thème précis et exploitable.

différentes études statistiques réalisées
Entre 1982 et 1986, nous avons effectué 22 études
statistiques concentrées sur le dossier de rhumatologie :
— 5 études sur la gonarthrose (487 cas au total) ;
— 4 études sur les lombalgies et lombosciatogies (225
cas au total) ;
— 4 études sur la coxarthrose (168 cas au total) ;
— 2 études sur les cervicalgies (118 cas au total) ;
— 2 études sur la pathologie du pied (112 cas au to-
tal) ;
— 1 étude sur les effets secondaires de la cure en rhu-
matologie (100 cas) ;
— 1 étude sur la pathologie de la main (60 cas) ;
— 1 étude sur la pathologie de l'épaule (58 cas) ;
— 1 étude sur la pelvispondylite rhumatismale (50 cas) ;

Presse thermale et climatique, 1988, 125, n° 5.
— 1 étude sur les algodystrophies périphériques (50 cas).
C’est donc plus de 1 428 dossiers médicaux informatisés qui ont pu être analysés par la Méthodologie Statistique pendant 5 années consécutives.

Nous ne rapporterons pas ici le détail des résultats de tous ces travaux dont certains font l’objet de communications séparées et exhaustives dans ce même Congrès :
— les 487 observations de gonarthrose ;
— les 50 observations de pelvispondylite rhumatismale ;
— les 50 observations d’algodystrophies périphériques.

Soulignons cependant que l’ensemble des résultats sont largement concordants et très positifs :

Aspects épidémiologiques

La plupart des Curistes ont un âge supérieur à 50 ans et sont de sexe féminin, ce qui ne surprend pas dans le cadre d’une pathologie où domine le rhumatisme chronique dégénératif.

Le choix de la thérapeutique thermale est motivé :
— le bon résultat des curistes précédentes ;
— les conseils du médecin traitant ;
— l’initiative personnelle du curiste ;
— parce que les traitements habituels sont insuffisants ou inefficaces ;
— parce que les médicaments classiques sont contre-indiqués ;
— parce que les médicaments classiques sont mal tolérés ;
— le désir du Curiste de réduire sa consommation médicamenteuse.

Aspects thérapeutiques

Nous avons pu apprécier les effets immédiats de la cure par un gain significatif réalisé sur la plupart des critères choisis :
— critères subjectifs (douleurs, gène fonctionnelle, sommeil...) ;
— critères objectifs (dynamique articulaire, effets anti-arthritiques, périmètre ou durée de la marche).

Dans l’ensemble la cure est très bien tolérée dans ces indications rhumatologiques, la crise thermale survenant chez 20 p. cent des patients entre les 5e et 8e jours.

Les fiches de post-cure n’ont pas toutes été envoyées au centre de traitement, ni ramenées par le curiste l’année suivante. Lorsque l’enquête a commencé voici 5 ans, le rendement était très faible (5 p. cent des fiches étaient récupérées), mais avec le temps, il s’est accru de façon très prometteuse (20 à 25 p. cent).

Ainsi avons-nous pu apprécier, quoique sur un nombre d’observations bien moindre, l’effet à distance qui lui aussi est très positif :
— amélioration de la symptomatologie entre 2 cures ;
— diminution sensible de la consommation médicamenteuse notamment pour les anti-inflammatoires non stéroïdiens ;
— diminution de l’absentéisme professionnel chez les sujets ayant conservé une activité professionnelle (entre 25 et 40 p. cent des sujets selon les pathologies).

Au total les conclusions de ces études statistiques en rhumatologie sont nettement favorables et étayées par des tests statistiques rigoureux et non par de simples observations subjectives.

PERSPECTIVES D’ÉVOLUTION

Actuellement, nous travaillons régulièrement pour ramener les dossiers existants parallèlement à l’expérience acquise, de façon à les rendre plus performants en fonction des critères d’évaluation retenus.

De même, nous sommes en train d’effectuer l’extension des spécialités déjà existantes et l’élaboration des dossiers, dans de nouvelles spécialités par ordre de priorité :
— l’urologie et les infections urinaires chroniques ;
— la pathologie artérielle ;
— la gastro-entérologie et la pathologie hépato-vésiculaire.

CONCLUSION

Elles comportent deux aspects :

Sur le plan strictement médical, la médecine thermale peut, grâce à un travail scientifique fondé sur des observations multiples et suffisamment détaillées, traitée par l’informatique, faire enfin la preuve statistique de son efficacité immédiate et à moyen terme ainsi que de sa bonne tolérance habituelle. Il reste bien entendu à confirmer l’efficacité à long terme, ceci exige de vastes enquêtes prospectives sur un grand nombre d’observations, et devra être réalisé systématiquement à l’avenir, en adaptant notre méthodologie à une plus grande échelle.

Sur le plan économique, il a été montré une réduction sensible de l’absentéisme professionnel, de la consommation médicamenteuse et « médicale », corroborant ainsi les résultats des enquêtes nationales entreprises depuis plusieurs années par les organismes sociaux et dans l’intérêt même de la thérapeutique thermale de ce pays.

Cette méthodologie originale pourra être mise à la disposition de quiconque s’intéressant à la thérapeutique thermale, et nous constatons d’ailleurs, qu’elle a déjà été reprise par un certain nombre d’équipes de recherche, dont plusieurs travaillent à nos côtés.
Dossier médical dermatologique informatisé

M. ODDOZE *, R. BARTOLIN **, C. DELBOY **

(La Roche-Posay, Marseille)

Le dossier médical informatisé de dermatologie thermale a été réalisé en 1985 avec le concours des médecins thermalistes de la station Roche-Posay en collaboration avec des médecins universitaires de l'Hôtel Dieu à Marseille.

Ce dossier est fait de deux parties :
1) la base comportant des informations non évolutives,
2) les satellites comportant des informations variant d'une cure sur l'autre, composés de :
 a) les satellites polyvalents (questionnaire individuel et questionnaire général sur l'épidémiologie, les antécédents et l'évolution générale de la maladie);
 b) les satellites dermatologiques spécialisés au nombre de cinq :
 — psoriasis,
 — eczéma atopique,
 — cicatrices hypertrophiques ;
 — acné,
 — prurits.

Nous développerons le dossier traitant de l'Eau Micronisée auquel nous nous sommes plus particulièrement attachés à la Roche-Posay.

En effet, on a toujours reproché au thermalisme son empirisme et l'absence de méthode scientifique dans l'évolution des résultats. En dermatologie, ces problèmes sont encore plus aigus que dans d'autres disciplines.

Dans le cas de la dermatite atopique par exemple :
— la pathogénie n'est pas complètement élucidée,
— les critères d'évolution et de pronostic sont mal précisés,
— l'histoire naturelle de la maladie est imprécise.

Nous avons donc mis au point un dossier informatisé de la dermatite atopique qui aura principalement trois objectifs :
 a) évaluer l'amélioration de la symptomatologie (modifications cliniques, espacement des poussées, guérison),
 b) évaluer la diminution du coût de la maladie (consommation médicamenteuse, consultations médicales, hospitalisations),
 c) éventuellement comparaison avec d'autres études réalisées en milieu hospitalier avec d'autres traitements.

Nous avons tout d'abord défini des critères de sélection pour entrer dans la population à étudier.

Il s'agit d'enfants et adolescents de 5 à 15 ans :
— porteurs d'une dermatite atopique isolée ou associée à d'autres manifestations de l'atopie,
— n'ayant jamais subi des cures thermales préalablement,
— en poussée ou non.

Ensuite, le dossier proprement dit qui se présente sous forme d'un questionnaire à remplir en trois ans. Il nécessite la collaboration du malade, du médecin thermaliste et du médecin traitant habituel.

Le dossier comprend quatre parties :
1ère partie :
— (Q 1) = renseignements épidémiologiques ;

\[\begin{array}{|l|}
\hline
\text{Q 1} \\
\hline
\text{NOM} \\
\hline
\text{PRÉNOM} \\
\hline
\text{SEXE} \\
\hline
\text{DATE DE NAISSANCE} \\
\hline
\text{AGE} \\
\hline
\text{RANG DANS LA FRATRIE} \\
\hline
\text{POIDS} \\
\hline
\text{TAILLE} \\
\hline
\text{LIEU DE NAISSANCE} \\
\hline
\text{ADRESSE HABITUELLE} \\
\hline
\text{ville} \\
\text{campagne} \\
\text{mar} \\
\text{montagne} \\
\text{+} \\
\text{++} \\
\text{+++} \\
\hline
\text{YEUX} \\
\hline
\text{bleus} \\
\text{verts} \\
\text{marrons} \\
\text{noirs} \\
\hline
\text{CHEVEUX} \\
\hline
\text{blonds} \\
\text{roux} \\
\text{noirs} \\
\text{châtain clair} \\
\text{châtain foncé} \\
\hline
\text{PHOTOTYPE} \\
\hline
\text{blanche} \\
\text{noire} \\
\text{jaune} \\
\text{métis} \\
\hline
\text{STATURE} \\
\hline
\text{normale} \\
\text{rachitique} \\
\text{fort} \\
\hline
\text{PROFESSION PARENTS} \\
\text{père} \\
\text{mère} \\
\hline
\text{NAISSANCE :} \\
\text{à terme} \\
\text{pathologie périnatale} \\
\text{allaitement maternel} \\
\text{oui} \\
\text{non} \\
\hline
\end{array} \]

* La Roche Posay, 86270.
** Service Universitaire de Thérapeutique et d'Hydroclimatologie Médicales, Hôtel-Dieu, 13224 MARSEILE CEDEX.
Q 2

ANTÉCÉDENTS

<table>
<thead>
<tr>
<th>Personnels</th>
<th>Familiaux</th>
</tr>
</thead>
<tbody>
<tr>
<td>ICHTYOSE</td>
<td></td>
</tr>
<tr>
<td>ECZÉMA</td>
<td></td>
</tr>
<tr>
<td>URTICARIE</td>
<td></td>
</tr>
<tr>
<td>PRURIGO ISOLÉ</td>
<td></td>
</tr>
<tr>
<td>DERMATOSE PALMOPLANTAIRE</td>
<td></td>
</tr>
<tr>
<td>PULPITE KERATOSIQUE</td>
<td></td>
</tr>
<tr>
<td>DYSIDROSE</td>
<td></td>
</tr>
<tr>
<td>DARTRES</td>
<td></td>
</tr>
<tr>
<td>DERMITE SEBORRHEIQUE</td>
<td></td>
</tr>
<tr>
<td>ECZÉMA DE CONTACT</td>
<td></td>
</tr>
<tr>
<td>PSORIASIS</td>
<td></td>
</tr>
<tr>
<td>PELADE</td>
<td></td>
</tr>
<tr>
<td>HYPERSENSIBILITÉ PIQUES</td>
<td></td>
</tr>
<tr>
<td>DYSPIÈDE ASTHMATIFORME</td>
<td></td>
</tr>
<tr>
<td>ASTHME VRAI</td>
<td></td>
</tr>
<tr>
<td>RHINITE SPASMODIQUE</td>
<td></td>
</tr>
<tr>
<td>CONjonctivite</td>
<td></td>
</tr>
<tr>
<td>MIGRAINE</td>
<td></td>
</tr>
<tr>
<td>SINUSITE</td>
<td></td>
</tr>
<tr>
<td>COLITE SPASMODIQUE</td>
<td></td>
</tr>
<tr>
<td>TROUBLES DE LA VISION</td>
<td></td>
</tr>
<tr>
<td>TROUBLES DU SOMMEIL</td>
<td></td>
</tr>
<tr>
<td>TROUBLES DE L’APPÉTIT</td>
<td></td>
</tr>
<tr>
<td>INFECTIONS : microbien</td>
<td></td>
</tr>
<tr>
<td>viraux</td>
<td></td>
</tr>
<tr>
<td>mycosiques</td>
<td></td>
</tr>
<tr>
<td>parasites</td>
<td></td>
</tr>
<tr>
<td>à répétition</td>
<td></td>
</tr>
</tbody>
</table>

* Prévoir Arbre Généalogique.

Q 3

ÂGE D’APPARITION DE LA DERMATITE ATOPIQUE

- [] ans
- [] mois

FACTEURS INCriminés

- chaud
- sudation
- froid
- soleil
- vaccination
- prise médicamenteuse
- infection
- sevrage d’allaitement
- introduction d’un aliment nouveau
- application d’un topique
- psychologiques
- changement d’environnement
- autres

NOMBRE DE POUSSEES PAR AN

- []

NOMBRE D’HOSPITALISATIONS

(durée en jours)

- [] jours

Q 4

SOINS ET TRAITEMENTS ANTÉRIEURS

1) Catégorie de médecins consultés :
 - généraliste
 - dermatologue
 - allergologue
 - pédiatre
 - acupuncteur
 - homéopathe
 - psychologue
 - autres

2) Traitements locaux
 - colorants
 - antiseptiques
 - émollients
 - goudrons
 - corticostéroïdes I
 - corticostéroïdes II
 - corticostéroïdes III
 - corticostéroïdes IV
 - corticostéroïdes dilués
 - cromoglycates disodiques
 - aucun traitement

3) Traitements généraux
 - antibiotiques
 - corticoïdes
 - antihistaminiques H1
 - gamma-globulines
 - allergobudine
 - histaglobine
 - homéopathie
 - antihistaminiques H1

4) Date du dernier traitement corticoïde
 - local
 - général

5) Désensibilisations :
 - lesquelles :
 - combien de temps :
 - résultats :
 - nul
 - moyen
 - bien
 - très bien

6) Sédatifs :
 - oui
 - non

7) PUVA
 - oui
 - non

(Q 2) = les antécédents personnels et familiaux ;
(Q 3) = âge d’apparition et facteurs incriminés nombre de poussée par an ; nombre d’hospitalisation ;
(Q 4) = soins et traitements antérieurs ;
(Q 5) = le bilan biologique s’il a été fait.

2**e partie : examen et évaluation des lésions à remplir par le médecin (Q6 et Q7) au début de chaque cure.

3**e partie : bilan thermal réalisé par le médecin à la fin de chaque cure thermale (Q8). Il notera les éventuels incidents de cure, le traitement médicamenteux concomitant et l’évolution des lésions pendant la cure.

Presse thermaie et climatique, 1988, 125, n° 5.
PREMIER EXAMEN ET ÉVALUATION LÉSIONNELLE DU PATIENT

TOPOGRAPHIE LÉSIONNELLE

Topo. classique
Topo. inversée
plis
visage
cou
décolleté
pieds
poultite kératosique
kératodermie palmaire
téteucrioundaire
oreilles
cheillite
perleche
thorax
abdomen
pli interfessier
racine fessée
poignets
chevilles
mamelons
creux axillaires
replis palpébraux
périnéale
cuir chevelu
reberds clifiôs

Q 5

BILAN BIOLOGIQUE :
1) Test allergologiques (si oui lesquels)
 [] poussières
 [] acariens
 [] pollens
 [] poils d'animaux
 [] plumes
 [] moisissures
 [] autres

 oui [] non []

2) Tests alimentaires
 [] lait
 [] œuf
 [] autres (détailler)

 oui [] non []

3) Tests microbiens :
 [] Staphylocoque doré
 [] Streptocoque hémolytique
 [] Candida albicans
 [] Tuberculine
 [] Autre

Q 6

Q 7

APPRÉCIATIONS DE L’OBSERVATEUR
Lors de la première cure : Médecin Thermal

- Troubles du caractère
 oui [] non []

- Soiue malade, nerveux, agité
 oui [] non []

- Retard scolaire
 oui [] non []

- Développement affectif
 normal [] anormal []

- Bilan relationnel Mère-enfant
 bon [] mauvais []

Atopie :
minuscule [] moyenne [] importante [] majeure []

Q 8

BILAN THERMAL
(A remplir par le médecin thermal)

1) Incidents de cure
 générales : ..
 (à préciser)

 locales : recrudescence des lésions
 recrudescence prurit
 surinfection : bénigne
 maligne

2) Traitement médicamenteux concommitant :

 A) A l’arrivée en cure :
 oui [] non []

 Si oui, détailler :

 B) Pendant la durée de la cure :

 1. -- le traitement existant est :
 conservé : oui [] non []
 modifié : oui [] non []

 Si oui, détailler :

 2. -- on est obligé d’instaurer un traitement chez un malade qui n’en avait pas :
 oui [] non []

 Si oui, détailler :

 3) Adaptations thérapeutiques
 oui [] non []

 4) Bilan fin de cure

 moins bien identique mieux

 | État général |
 | État psychique |
 | Prurit |
 | Lésions cutanées |

Presse thermale et climatique, 1986, 125, n° 5.
Q 9

BILAN POST-CURE

(A remplir par le médecin correspondant)

A. – A REMPLIR LORS DE LA PREMIERE CONSULTATION APRES LA CURE

a) signes cutanés
 améliorés □ □ □
 aggravés □ □ □

b) complications immédiatres après la cure :
 nouvelles poussées □
 autre □

c) appréciation globale sur l’efficacité de la cure :
 très bien □
 moyenne □
 nulle □

d) appréciation sur l’état général :
 très bien □
 moyen □
 moins bien □

e) psychologique :
 amélioration □
 stagnation □

B. – A REMPLIR PENDANT LA DERNIERE CONSULTATION AVANT NOUVELLE CURE

a) jugement global sur l’efficacité de la cure de l’année dernière :
 très bonne □
 moyenne □
 nulle □

b) consommation médicamenteuse pendant l’année :
 nulle □
 idem □
 diminuée □
 augmentée □

c) nombre de jours de corticoïde :
 par mois
 en tout

d) si traitement pour leur Dermatite atopique, lequel(s) (détailier)

Q 10

(plusieurs questionnaires à remplir pour les parents au cours de l’année)

Date de consultation :

Médecin consulté :
 Médecin traitant □
 Spécialiste □
 Hôpital □

Ordonnance :

Prix des médicaments :

Hospitalisation OUI □
 NON □
 NOMBRE DE JOURS

Date de consultation :

Médecin consulté :
 Médecin traitant □
 Spécialiste □
 Hôpital □

Ordonnance :

Prix des médicaments :

Hospitalisation OUI □
 NON □
 NOMBRE DE JOURS

4^e partie : qui comprend 2 feuilles :

- (Q 9) une feuille à remplir par le médecin traitant habituel en deux temps :
 — d’abord lors de la première consultation après la cure ;
 — et enfin lors de la dernière consultation avant le départ en cure de l’année suivante ;

- (Q 10) une feuille à remplir pour les parents au cours de l’année destinée à évaluer le coût de la maladie.

En conclusion, pour évaluer les résultats de la cure thermale chez l’enfant atopique à la Roche-Posay, nous proposons une étude prospective qui nous permettra de suivre l’évolution des maladies bénéficiant d’une cure annuelle 3 ans de suite.

L’analyse des paramètres nous permettra d’objectiver s’il y a lieu une amélioration de la dermatose de façon directe et indirecte :

Presse thermale et climatique, 1988, 125, n° 5.
Le dossier médical informatisé de pneumologie en pratique thermale : méthodologie

D. NICOLAS *, R. BARTOLIN **, C. DELBOY **

(Gréoux-les-Bains, Marseille)

Le dossier médical informatisé de pneumologie est construit comme les autres dossiers et comprend une base permettant l’identification du malade et cinq satellites ainsi développés :

— satellite 1 : épidémiologie, antécédents ;
— satellite 1 bis : questionnaire individuel ;
— satellite 2 : évolution de la maladie ;
— satellite 3 : fiche de soins thermaux ;
— satellite 5 : poumons et branches.

Le premier satellite est consacré à l’épidémiologie et aux antécédents : sa simplicité est telle qu’il peut-être rempli par le patient lui-même. Il concerne l’origine géographique, l’activité professionnelle, les motifs de la cure thermale et du choix de la station.

Les antécédents sont considérés classiquement sous deux rapports :

— les antécédents familiaux apprécient l’éventualité d’un facteur héréditaire ;
— les antécédents personnels visent à analyser l’ancienneté des symptômes et l’association éventuelle entre antécédents ORL et pulmonaires.

Le « terrain » global parmi lequel figure une première approche de la consommation tabagique est précisé.

Le questionnaire individuel ou fiche satellite 1 bis permet une description plus fine du mode de vie et des circonstances favorisant la pathologie pour laquelle le patient effectue la cure, ainsi que les principaux symptômes cliniques allégés.

Le risque professionnel, le degré de pollution urbaine et du milieu de travail, les principaux facteurs allergiques et irritants sont ensuite envisagés. Puis le questionnaire reprend les différents signes cliniques en s’attachant à en fixer l’ancienneté.

Ensuite est placé un petit questionnaire réservé aux enfants de moins de quinze ans précisant leur niveau scolaire et leur degré d’absentéisme éventuel, les enfants représentant, en effet, une grande partie des patients en crénothérapie des voies respiratoires.

La fiche satellite 2 est capitale puisqu’elle fait le point sur l’évolution de la maladie ; elle précise le motif exact pour lequel la cure actuelle est réalisée, l’ancienneté des troubles, le résultat global de la cure précédente appréhendé sur l’état fonctionnel, la consommation médicamenteuse et l’absentéisme professionnel, le traitement médical en cours et d’éventuelles interventions chirurgicales.

La fiche satellite 3 précise l’ordonnance des soins thermaux avec le nombre de séances prescrites et exécutées et en apprécié la tolérance. Sont enfin énumérés les principaux médicaments poursuivis durant la cure. Ce satellite est complété par une échelle d’auto-évaluation très facile à remplir par le patient.

La fiche satellite 5 concerne exclusivement la pathologie broncho-pulmonaire. Elle comporte deux parties :

— la première est établie par le médecin crénothérapeute pendant la cure ;
— la seconde partie, exactement calquée sur la première, est remplie par le médecin traitant, à distance du traitement thermal.

La fiche de début et fin de cure effectue le bilan exact de la maladie :

— clinique : signes généraux, signes fonctionnels, signes associés puis données de l’examen ;
— paraclinique : essentiellement radiographie et paramètres de l’exploration fonctionnelle respiratoire précisant essentiellement s’il s’agit d’un syndrome obstructif, restrictif ou mixte et son degré. Une conclusion permet au médecin thermaliste d’affiner son diagnostic sur l’affectation présentée par le patient et d’apprécier en fin de traitement la tolérance et l’efficacité immédiate de la cure.

La fiche de post-cure demande la coopération du médecin traitant puisque c’est celui-ci qui la remplit idéalement au 4e mois après le retour à domicile. Les traitements éventuellement effectués pour la maladie ayant motivé la cure y sont consignés ainsi que l’état fonctionnel du patient et l’évolution de l’examen clinique et paraclinique. Enfin le médecin traitant peut décrire les éventuelles complications survenues au décours immédiat de la cure et en guise de conclusion il apprécie l’efficacité à moyen terme et l’opportunité d’une prochaine cure dans la même station.

* 04800 GREOUX-LES-BAINS.
** Service Universitaire de Thérapeutique et d’Hydroclimatologie Médicales, Hôtel de l’Hôpital-Dieu, 13224 MARSEILLE CEDEX 1.
Le dossier médical informatisé des artériopathies chroniques en pratique thermale : méthodologie

C. AMBROSI *, R. BARTOLIN **, C. DELBOY **
(Royat, Marseille)

Le dossier médical informatisé des artériopathies comprend, comme les autres dossiers, une base (identification du malade) et quatre satellites :
— épidémiologie de la maladie et antécédents ;
— évolution ;
— fiche de soins thermaux ;
— artériopathie chronique des membres inférieurs.

Le premier satellite, consacré à l’épidémiologie et aux antécédents, est destiné à être rempli, en grande partie, par le malade lui-même. Il est simple, bref, comprend 60 items. Les réponses sont à cocher.

Il concerne l’origine géographique, l’activité professionnelle du curiste (en activité, au chômage, en pré-retraite ou retraité) et l’interrogue sur les raisons qui ont motivé le traitement thermal.

C’est une brève présentation du patient par lui-même, une entrée en matière à la poursuite du dialogue avec le médecin.

L’étude des antécédents familiaux vise à chercher s’il existe une hérédité tant chez les ascendants que chez les descendants.

L’étude des antécédents personnels permet, après avoir daté l’ancienneté de la maladie, d’établir la chronologie des différents événements médicaux et chirurgicaux qui ont jalonné son histoire. Ce développement a souvent précédé de longue date, la venue du patient pour la première fois en cure.

La poursuite du dialogue permet de retrouver dans la plupart des cas, la présence d’une affection cardio-vasculaire associée : une hypertension artérielle ancienne, une coronaropathie, un infarctus du myocarde ; plus rarement un accident vasculaire cérébral ; accessoirement d’autres atteintes vasculaires, par exemple une thrombose veineuse profonde des membres inférieurs. La recherche des facteurs de risque cardiovasculaire est une étape devenue classique depuis l’étude de Framingham. Elle est essentielle pour établir la fiche signalétique du patient et la thérapeutique à venir.

Les principaux facteurs sont : la sédentarité, favorisée par la civilisation de l’automobile, le tabac, encouragé malheureusement par la publicité, l’HTA retrouvée de façon routinière, le diabète, généralement mal ou pas équilibré, une dyslipidémie toujours soupçonnée, et, à préciser, plus secondairement, un surpoids.

L’association d’autres antécédents médicaux contingents est parfois retrouvée, notamment ostéo-articulaires (coxarthrose, gonarthrose, lombo-sciatique) qui gênent la marche et favorisent la sédentarité.

De la marche, on précisera la pratique : durée quotidienne, vitesse, fréquence, en en soulignant l’intérêt pendant et après cure, de même que celui d’un sport pratiqué adopté (bicyclette notamment).

Enfin, pour conclure ce dossier satellite, les motifs cliniques circonstanciels qui ont conduit le patient en cure seront relevés.

Ces 2 premiers satellites comprennent 143 items, dont 43 peuvent être remplis par le malade lui-même. Le temps pour les remplir complètement pour un médecin entraîné est de 20 minutes pour les deux.

— Le troisième satellite, très bref, résume l’ordonnance des soins thermaux prescrits par le médecin thermaliste et celle du traitement médical maintenu, avec l’énnumération détaillée des soins hygiéno-diététiques.

— Le quatrième satellite comprend 2 parties : la première établie par le médecin thermaliste, concerne la fiche de début et fin de cure ; la deuxième remplie par le médecin traitant, concerne le suivi du patient dans les mois qui succèdent au traitement thermal.

** Fiche de début et fin de cure

C’est le bilan clinique avec les signes fonctionnels, les signes physiques, les investigations para-cliniques classiques (doppler, mesures du périmètre de marche sur tapis roulant, mesures de la TC PO2 fournissant le degré d’ischémie tissulaire, échographie vasculaire localisant le siège des lésions et évaluant le degré des sténoses).

C’est également le bilan biologique particulier à ce type de patients pour décider ou vérifier une dyslipidémie, un diabète, une hyperuricémie, ou plus rarement, une hyperglobuline, une hyperfibrinémie ou une VS accélérée.

A l’issue de ces investigations, le stade évolutif de l’atteinte artérielle est déterminé et le siège des lésions précisé. En fin de traitement une appréciation est portée sur l’efficacité et la tolérance du traitement thermal.

Le suivi du patient par le médecin traitant est formulé dans une fiche à remplir 6 à 9 mois après la fin de la cure.

Y sont résumés les traitements effectués depuis la cure concernant la même maladie : traitement médical avec les mesures hygiéno-diététiques et la thérapeutique médicamenteuse suivies, les interventions chirurgicales subies.

Y sont notés les résultats de l’examen clinique faisant le point de l’évolution de la symptomatologie depuis la fin de la cure, en particulier en vérifiant si des complications ont pu apparaître au cours de cette période.

Enfin une appréciation globale, par le médecin et le patient, est portée par une évaluation chiffrée.
Le dossier médical informatisé de crénothérapie :

méthodologie

C. GARREAU *, R. BARTOLIN **, C. DELBOY **

(Barbotan, Marseille)

— La démarche informatique n’est pas simple en station thermale du fait de la diversité existante :
— les médecins de formations diverses et ayant peu de temps à consacrer à de lourds questionnaires,
— les pratiques thermales variées,
— les établissements thermaux pas toujours ouverts à la recherche.

DÉMARCHE MÉDICALE A BARBOTAN

Cette démarche médicale a duré 10 ans :
Avant 1976, les recherches dispersées mais continues étaient poursuivies ; nous ne notons qu’une seule publication publique.
A partir de 1976 et après une réunion médico-universitaire s’était fait sentir la nécessité d’observations cliniques systématiques sur fiches typées pour préciser les résultats obtenus.
En 1977, nous avons créé un Institut de Recherches Thermales Ecologiques et Médicales (IRTEM) qui a reçu le patronnage de la plupart des Universités désirant d’approfondir la thérapeutique thermale.
En 1979, nous obtenons un local de recherches.
En 1980, 81 et 82, des médecins stagiaires peuvent avec un appareil Doppler et un rhéographe double effectuer des contrôles en début et fin de cure dans le cadre de leur mémoire d’hydrologie.
En 1983, nous avons une infirmière à mi-temps.
En 1984, le Laboratoire de Recherches est acquis avec une infirmière plein temps et un pléthysmographe Périven.
En 1985, le Comité Scientifique est créé, l’informatisation se met en place après plusieurs séances de réflexion médico-universitaires interdisciplinaires (Toulouse, Bordeaux).
Il est retenu un thème annuel d’intérêt général et des sujets particuliers plus spécifiques de certaines pathologies.

ÉTAPES DE L’INFORMATISATION

Au cours de ces 10 années ont été progressivement établis les éléments nécessaires à l’informatisation.

Observations cliniques
De la fiche simple, variable pour chaque médecin, nous avons abouti à une fiche standard.

Précision des paramètres mesurables
Ceux que le médecin mesurait dans son cabinet à chaque consultation et ceux qui seraient contrôlés, de façon systématique, hors du cabinet.

Établissement d’un dossier médical complet
Il comporte les deux éléments cités ci-dessus ainsi que les fiches de traitements thermaux. Cet ensemble permettra de corrélérer les différents paramètres. Sur de longues séries, le travail manuel était trop long et aussi l'informatisation des données s’avérait inéluctable.

Informatisation
Avec le Service Universitaire de Thérapeutique et d’Hydroclimatologie médicale de l’Hôtel Dieu de Marseille (Dr Bartolin et Pr Delboy), il nous a été possible de réaliser un dossier médical informatisé permettant un traitement statistique des données.

DOSSIER MÉDICAL INFORMATISÉ

Il est composé d’une base et de satellites.

BASE
Elle comporte les informations qui restent fixes (station, médecin curiste).

SATELLITES
Ce sont des dossiers particuliers qui comportent toutes les informations changeant d’une cure à l’autre. On distingue les satellites de spécialité. Le chaînage de l’ensemble est réalisé par la date de la cure en cours.

Satellites polyvalents

Satellite 1
Il comporte l’émémiologie et les intécédents : résidence, activité professionnelle, cures antérieures, raisons de la cure, raisons du choix de la station, antécédents familiaux et personnels, habitudes de vie et facteurs favorisants, motifs de la cure actuelle.

Satellite 2
Dans la pathologie étudiée (ex. : thrombose veineuse pro-

* Institut de Recherches Thermales et Médicales de Barbotan (IRTEM).
** Service Universitaire de Thérapeutique d’Hydroclimatologie Médicale, Marseille.

Presse thermale et climatique, 1988, 125, n° 5.
fond), il s'agit de l'évolution de la maladie : circonstance de survenue, localisation, chronologie, traitements en phase aiguë, évolution immédiate et ultérieure, traitement médical en cours d'évolution, état du malade depuis la dernière cure.

Satellite 3

C'est la fiche de soins thermaux : techniques de cure, nombre de séances prescrites et effectuées, tolérance, traitement phlébologique en cours de cure.

Satellite 4

Il est spécifique de l'affection que l'on veut étudier ; c'est un satellite de spécialité.

Satellites de spécialité

Exemple : Étude des séquelles de thromboses veineuses profondes des membres inférieurs, authentifiées sans ulcère en évolution.

Fiche de début et fin de cure (Médecin thermal)

Évolution de la symptomatologie

Le médecin consigne la variation en début et fin de cure des signes physiques et fonctionnels spécifiques et des paramètres mesurés :

- paramètres écrits (recueillis par le médecin),
- paramètres calculés (mesurés au Laboratoire),
- paramètres biologiques (résultats des examens demandés).

Appréciation immédiate de la cure (Médecin thermal et malade)

Il s'agit de l'évaluation de l'efficacité, de la tolérance et de l'appréciation globale.

Fiche de post-cure

Elle est destinée au médecin traitant afin de consigner les observations à 3 et 6 mois.

Elle comporte plusieurs volets :

- traitements effectués depuis la cure pour la pathologie choisie,
- appréciation évolutive de la situation du patient,
- évolution de la symptomatologie (où nous retrouvons les mêmes paramètres écrits, calculés et biologiques),
- complications immédiates ayant pu apparaître après la fin de la cure,
- appréciation globale (médecin traitant et malade).

REMARQUES

Pour cet ensemble, le dossier informatisé comporte 24 pages et 463 items avec 14 codes de numérotation.

La partie « Base » et les trois premiers « Satellites » sont utilisables pour d'autres pathologies. Seul le satellite de spécialité changera.

Ainsi, d'autres satellites de spécialité sont à l'étude :

- thromboses veineuses superficielles,
- varices essentielles,
- troubles veineux fonctionnels de la ménopause,
- dermites ou ulcères d'origine veineux,
- acrosyndromes, etc.

SECRETS MÉDICAUX

Il est totalement respecté :

- seul le médecin connaît le malade et lui attribue un numéro,
- le laboratoire ne connaît ni le médecin, ni le malade,
- seul le médecin connaît son numéro de code attribué par l'Institut de Marseille,
- le médecin peut donc utiliser ses seuls dossiers pour sa propre étude,
- la statistique globale ne traitera que les dossiers des médecins qui le désireront.

Ainsi a été établie une fiche de liaison permettant au médecin d'adresser son patient au Laboratoire de Recherche. Une partie de la fiche reste au Laboratoire, l'autre partie reste au Médecin.

CONCLUSION

Le dossier médical informatisé va permettre de rassembler les éléments médicaux nécessaires :

- à l'appréciation objective des effets des cures thermales,
- à la compréhension des mécanismes d'action,
- à la précision des indications.

Ce dossier sera un élément fondamental pour prouver que la thérapeutique thermale est une véritable thérapeutique naturelle en milieu naturel.

RÉSUMÉ

Le thermalisme veut être une thérapeutique à part entière. Il se doit de le prouver. Les auteurs exposent la démarche informatique adoptée à Barbotan avec la réalisation d'un dossier médical informatisé et d'un Laboratoire de Recherches dans les Thermes. Une tranche de pathologie sera chaque année étudiée permettant de rassembler les éléments médicaux nécessaires à l'appréciation objective des effets des cures thermales à la précision des résultats prouvant que la thérapeutique thermale est une véritable thérapeutique en milieu naturel.

RÉFÉRENCES

Utilisation de l'informatique en médecine thermale

Base de données bibliographiques sur le thermalisme

Résumé

C. GUENOT *, J.F. COLLIN **, M. BOULANGÉ **
(Vandœuvre-les-Nancy)

Les auteurs présentent le nouveau service documentaire Thermal sur la médecine et les techniques thermales, l'hydrogéologie et le thermalisme en général.

Ce projet Thermal s'inscrit dans le cadre de la valorisation, par leur regroupement sur le site serveur universitaire régional, CIRIL, des fonds bibliographiques de divers producteurs privés ou universitaires relevant du domaine de la santé publique. Tous disposent d'un langage unique d'interrogation, véritable interface entre les bases documentaires et les utilisateurs non initiés aux techniques documentaires et à la syntaxe, souvent complexe, d'interrogation.

La maquette présentée ici permet la recherche multicritères (auteurs, mots des titres, source bibliographique, année d'édition, langue, ...) guidée par un ensemble de menus déroulants, depuis un simple terminal ou, l'outil maintenant généralisé en France, le minitel.

La base qui comporte aujourd'hui plus d'un millier de références françaises et européennes devrait vite devenir accessible à des utilisateurs géographiquement répartis, par le réseau national de télécommunication Transpac.

Thermadoc

Base de données documentaires sur les stations thermales

Résumé

P. ATLAS *, F. KOHLER *, J.F. COLLIN **, M. BOULANGÉ **
(Vandœuvre-les-Nancy)

Favoriser les échanges entre les stations thermales, les curistes et les médecins prescripteurs de cures, tel est notre objectif à travers ce système télématicque.

Les données consultables par Minitel permettent de connaître les indications thérapeutiques des stations thermales et les techniques utilisées. Véritable fiche signalétique des stations, les données abordent entre autres les formalités de Sécurité sociale, les dates d'ouverture, l'environnement médical, cultural et touristique des stations.

Les données sont enregistrées au Centre Serveur, Centre Interrégional d'Informatique de Lorraine (CIRIL). L'interrogation est réalisable par Téléphone 3 (Kiosque) : 3615. Code KIRIL. Ce service est répertorié sous l'intitulé Stations dans l'ouvrage de la DBMISET Banques de données de l'Université et du CNRS, 1986.

* Statistiques et Informatique Médicale,
** Hydrolgie et Climatologie Thérapeutiques,
Faculté de Médecine, B.P. 184, 54505 Vandœuvre-les-Nancy.
Informatisation de la méthode de représentation graphique de composition chimique des eaux spécialement d'intérêt médical

Résumé
B. NINARD *, E. NINARD
(Paris)

L'auteur avait en 1961, avec son collaborateur Maurice Besançon, mis au point une méthode originale de représentation graphique des eaux « minérales », d'ailleurs applicable aux autres eaux. Cette méthode met en évidence, d'une part leur minéralisation globale, d'autre part leur composition ionique, comprenant les ions majeurs :

- anions : CO₃²⁻, Cl⁻, SO₄²⁻, SiO₃⁻;
- cations : Na⁺, K⁺, Ca²⁺, Mg²⁺.

Une aide informatique dans le thermalisme

Résumé
MINISTERE DES AFFAIRES SOCIALES ET DE L'EMPLOI
(Paris)

Les différents services du ministère des Affaires sociales et de l'Emploi intervenant dans le thermalisme sont les suivants :
- La Direction Générale de la Santé, Sous-Direction de la Prévention Générale et de l'Environnement, Bureau 1.D.
- Le Laboratoire National de la Santé, Département des Etudes Hydrologiques et Thermales.
- La Direction de la Sécurité Sociale, Sous-Direction de l'Assurance Maladie, Bureau A.M.3.

et les services extérieurs du ministère, à savoir :
- Les Directions Régionales des Affaires Sanitaires et Sociales.
- Les Directions Départementales des Affaires Sanitaires et Sociales.

Par ailleurs :
- Le Haut Comité du Thermalisme et du Climatisme, Commission Consultative placée auprès du ministre chargé de la Santé.

Chacun de ces services possède des données différentes et complémentaires sur le thermalisme.

La Direction Générale de la Santé a réuni un groupe de travail pour réfléchir sur l'aide que l'informatique pourrait apporter dans ce domaine. Les objectifs qui ont été fixés sont les suivants :
- regrouper les données sur le thermalisme ;
- permettre l'échange d'informations entre les différents partenaires ;
- diffuser l'information auprès du public, des professionnels des administrations et des élus.

L'application que nous présentons a été mise au point par la division de l'Organisation et de l'Informatique (Direction de l'Administration Générale, du Personnel et du Budget) du ministère. Elle regroupe des informations sur :
- la localisation géographique ;
- les usines d'embouteillage ;
- les établissements thermaux ;
- les équipements et moyens ;
- les types de soins ;
- les ressources minérales (quantitatives et qualitatives) ;
- les produits thermaux.
Le logiciel macure

Résumé

P. FREZET *
(Digne-les-Bains)

Le thermalisme, thérapeutique spécialisée souvent standardisée mais basée sur un diagnostic précis et s'intégrant dans un projet thérapeutique global à moyen et long terme semble pouvoir profiter au mieux de l'informatique médicale.

Le docteur Frezet, Rhumatologue à Digne-les-Bains présente un logiciel de cabinet médical thermal fonctionnant sur MACINTOSH PLUS avec disque dur et comportant :

— un fichier curiste classique dont une partie est schématisée, modifiable au gré de chacun et légendable pour les diagnostics et commentaires radiographique ;
— plusieurs sous-fichiers dont objectifs, résultats et conseils de post-cure pour le suivi des curistes ;
— une fonction édition (plusieurs modèles de lettres personnalisables pour les correspondants, ordonnances types de pratiques thermales complémentaires, confirmations de rendez-vous...) ;
— un livre de caisse pour les recettes diverses (forfaits thermaux, consultations, soins...) ;
— une analyse des résultats et statistiques diverses.

Ce logiciel d'utilisation pratique et simple dénommé « MACURE » peut être utilisé par tous les médecins thermaux (rhumatologues, O.R.L., généralistes ou spécialistes...) et permet :

— d'aider le médecin dans ses tâches répétitives et comptables ;
— d'améliorer la qualité de la consultation et la mise à jour de ses dossiers ;
— de mieux communiquer avec son patient et le médecin prescripteur (conseils à moyen et long terme, soins divers de post cure, évaluation des résultats, communication d'un double du dossier thermal...) .

* Médecin thermal, Rhumatologue, 04000 Digne-les-Bains.
Session 11
Bases expérimentales de la crénothérapie

Essai de classification technique des boues thermales

R. SAVARIT *
(Rochefort-sur-Mer)

En 1949, lors de la quatrième Conférence Scientifique Internationale de Dax, il y avait en France moins d’une dizaine de villes thermales utilisant de la boue à des fins thérapeutiques. Il en existe aujourd’hui plus d’une quarantaine. Ce phénomène inflationiste, peut-être moins important à l’étranger en l’absence de réglementation, pose un problème de classification et de terminologie.

Depuis cette réunion, on a pris l’habitude d’englober sous le nom de « péloides » tous les produits pâteux ou fluides employés dans les stations.

Cette apparente simplification taxinomique, voulue pour ennobrir le mot « boue » jugé... trop vulgaire, fausse la sémantique car elle ne tient compte pour sa définition ni des propriétés thérapeutiques du substrat, encore moins du produit fini, ni du mode préparatoire de ce dernier.

Les diverses classifications proposées des boues thermales, dont celle de 1949, ne sont que des catalogues analytiques géologiques.

Au terme d’un long travail préparatoire, sous l’autorité du Dr Canellas, spécialiste des boues thermales du Sud-Ouest de la France (où l’on compte Dax) et en liaison avec son équipe du Laboratoire d’Hydrologie de la Faculté de Pharmacie de Bordeaux, avec les conseils du Dr Raymond Laugier du Laboratoire d’Hydrologie de la Faculté de Pharmacie de Châteauroux-Malabry, en tenant compte des importants travaux des équipes des Prs Rambaud, à la Faculté de Pharmacie de Montpellier, et Boulanger à celle de Médecine de Nancy, nous avons été amenés à restreindre l’appellation « péloides », à la préciser et à établir un essai de hiérarchisation des produits utilisés en pélithérapie et fangothérapie. La persistance de ces deux termes dans le vocabulaire thermal, souligne bien l’existence de produits différents.

Il est temps de revenir à une terminologie simple et réaliste, réservant comme l’indique clairement le Pr Ottman du Laboratoire de Géologie Marine et Appliquée de Nantes les termes de :

— boues thermales au mélange obligatoire d’une eau minérale médico-thermale avec un produit solide naturel, modifié ou non, nécessitant ou non un artéfact préparatoire, utilisées dans les établissements thermaux ;

— vases marins aux produits marins utilisés frais et sans traitement préalable dans les thermes marins.

* Les boues thermales peuvent se diviser comme suit :

— les boues thermales imprégnés ou « poltoides » sont des bouillies obtenus par malaxage extemporané d’un produit naturel modifié étranger au griffon, avec l’eau des griffons ;

— les boues thermales macérées ou « fangoïdes » sont obtenues par macération pendant une semaine dans de l’eau thermale d’un produit naturel modifié ou non ;

— les boues thermales mûrées ou « péloides » sont obtenues par mélange d’un biotope naturel (sols ou tourbes plus ou moins humifiés, boues superficielles de dépôt lacustre, marin fluviatile) avec l’eau des griffons, amenant la création d’un nouveau biotope thermal. Au cours d’une longue maturation de six mois à un an, les produits de la biocénose font apparaître des propriétés thérapeutiques nouvelles importantes.

Cette classification s’inspire directement de celle proposée en 1949 par le Pr Pisani de l’Université de Florence à Dax. Il précisait qu’à côté des concepts géologiques, il fallait
retenir les procédés techniques pour différencier les boues. Certes, les modes de fabrication ont évolué. A la chaudière à vapeur a fait place le malaxeur électrique thermo-régulé. Les moteurs employés pour désigner le produit fini sont simples et évocateurs. Ils sont le signe de l’élaboration plus ou moins complexe du produit prêt à l’emploi.

Il est important de faire apparaître à côté du mode préparatoire, une diversité dans la composition de la phase solide qui peut se répartir en une charge minérale et une charge organique, présente ou absente dans certaines catégories.

La phase minérale est toujours présente, sauf le cas d’espèce des conformvoires, constitués uniquement d’algues.

La charge organique est absente sauf dans les pédioïdes. Elle est minéralisée dans les pédioïdes marins fossilisés.

Une composante prend un relief important, la biocénose. Ce terme a été introduit dans le vocabulaire thermal international par le Pr Jean Canellas au colloque de la FITEC et de la ISMH sur la fangothérapie à Abano Terme, en avril 1986. Ce terme écologique définit bien l’ensemble de la partie vivante du biotope thermal créé. Il est constitué par une phyto, une bactéroïde, une zoo et une viro-cénose dont l’activité modifie profondément les qualités physiques, chimiques et thérapeutiques du substrat mélangé à l’eau thermale.

Cette biocénose n’apparaît qu’en présence de matière organique. Certains ions et les conditions métaboliques influent sur son développement.

Elle peut être ajoutée ou surajoutée par apport artificiel pour enrichir un fangoidès ou un pédioïde.

L’analyse de la phase liquide révèle la présence d’une eau de constitution contenue dans les mailles des minéraux argileux ou dans les lacunes du substrat. L’eau thermale qui s’ajoute à cette eau pour former l’eau d’imbibition réclame des qualités de minéralisation particulières car elle contribuent à d’importants transferts d’ions qui modifient les qualités thérapeutiques du produit prêt à l’emploi.

Le phénomène de maturation qui aboutit selon nous au vrai pédioïde, dont les types les plus connus sont le « fango d’Abano » ou le « pédioïde de Dax », ou encore celui de Rochefort pour ne citer que ceux-là, est le garant d’un enrichissement des qualités thérapeutiques.

Il permet entre autres l’élimination de souches bactériennes pathogènes pour l’homme, l’apparition de produits nouveaux : vitamines, phytohormones, acides aminés, etc. qui bénifient l’ensemble.

La classification simplifiée retenue fait intervenir le mode de préparation.

A la lecture du tableau I, on s’aperçoit que : les boues thermales humectées ou « lutoides » sont produit de floculation recueillis au griffon et réhumidifiés avec l’eau de la source productrice ;

Les lutoides, par la qualité du floculat, fournissent aussi des boues thermales d’excellente qualité.

TABLEAU I. — Classification simplifiée.

<table>
<thead>
<tr>
<th>Boues humectées</th>
<th>Préparées par humectation d’un substrat sec ou essoré</th>
<th>Provenance uniquement :</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>minérale : lutoides thermaux</td>
</tr>
<tr>
<td></td>
<td></td>
<td>végétale : conformvoires</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Boues imprégnées</th>
<th>Par imprégnation d’un produit sec ou pâteux</th>
<th>Provenance d’origine minérale : poltoides</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>Provenance modifiée bioactifs : poltoides enrichis</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Boues macérées</th>
<th>Macération d’un produit préalablement humecté</th>
<th>Provenance : fangoides bioactifs : fangoides élaborés</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>---</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Boues mûrées</th>
<th>Maturation d’un produit naturel de consistances pâteuse</th>
<th>Provenance : pédioïdes bioactifs mais inertes : pédioïdes inertes</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>---</td>
</tr>
</tbody>
</table>

TABLEAU II. — Classification technique des boues thermales

<table>
<thead>
<tr>
<th>Dénomination</th>
<th>Phase solide</th>
<th>Phase liquide</th>
<th>Phase gazeuse</th>
<th>Activité biologique</th>
</tr>
</thead>
<tbody>
<tr>
<td>Boues naturelles humectées</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>— Lutoides</td>
<td>+</td>
<td>0</td>
<td>Eau thermale</td>
<td>+</td>
</tr>
<tr>
<td>— Conformvoires</td>
<td>0</td>
<td>0</td>
<td>Eau de constitution</td>
<td>0</td>
</tr>
<tr>
<td>Boues naturelles modifiées</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>— Poltoides</td>
<td>+</td>
<td>0</td>
<td>+</td>
<td>Inertes bioactifs</td>
</tr>
<tr>
<td>— Poltoides enrichis</td>
<td>+</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
</tbody>
</table>

Dites boues imprégnées				
— Poltoides	+	0	+	Légèrement bioactifs
— Poltoides enrichis	+	0	+	

Dites boues macérées				
— Fangoides	+	0	+	Bioactifs
— Fangoides élaborés	+	Traces	+	

Dites boues mûrées				
— Pédioïdes vrais	+	+	+	
— Pédioïdes enrichis	+	0	+	
— Pédioïdes minéralisés	+	Minéralisés	+	
Les classes intermédiaires doivent être regardées avec attention. Souvent à base de bentonite (nom commercial de notre bien connue montmorillonite ou smectite), ou d'autres argiles pures, elles sont susceptibles, à cause de phénomènes d’absorption mal contrôlés, d’être l’objet de contaminations gênantes dans les conditions d’utilisation qui sont les leurs. Une réflexion et une réglementation devraient être entreprises à leur sujet.

Dans sa thèse sur le péloïde Rochefort [3], Florence Savarit fait état de la classification technique, selon le mode de préparation des boues thermales françaises, proposée par Canellas à Spa en avril 1987 [5]. Elle est résumée dans le tableau III.

Voilà ce à quoi nous conduit, après une brève énumération, une comparaison rapide de ces différentes classes de boues.

A croire que les anciens qui tiraient leurs boues thermales du lac d’Aqua-Pétrarque ou des rives de l’Adour et les laissaient mûrir de longs mois dans l’eau thermale, avaient empiriquement répondu aux difficultés du présent.

REFERENCES

TABLEAU III. — Classification de Canellas, 1987.

<table>
<thead>
<tr>
<th>Péloïde (Historique)</th>
<th>Barbotan (Bois sacré)</th>
<th>Dax (Trou des pauvres)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Péloïde (sensu stricto)</td>
<td>« Maturation »</td>
<td>Argile de carrière</td>
</tr>
<tr>
<td>Limon</td>
<td>Dax Salaruc</td>
<td></td>
</tr>
<tr>
<td>Dax (Therme Adour)</td>
<td>Aix-les-Bains</td>
<td></td>
</tr>
<tr>
<td>Péloïde (par extension)</td>
<td>Mélange extemporané d’un substrat argileux et d’une eau minérale séparément</td>
<td>Aix-les-Bains</td>
</tr>
<tr>
<td>Fangoid</td>
<td>Mélange d’un substrat végétal et d’une eau minérale</td>
<td>Barbotan</td>
</tr>
<tr>
<td>Pâtre à l’eau minérale</td>
<td>Mélange d’un substrat argileux et d’une eau minérale</td>
<td>Luchon</td>
</tr>
</tbody>
</table>

Remarque :
Le péloïde correspond aux produits élaborés naturellement à l’endroit où jaillit une eau thermale.
La pâtre à l’eau thermale minérale correspond au poltoïde de R. Savarit baptisé ainsi par le Professeur Pisani en 1949.
La seule différence se situe au niveau des péloïdes par extension, que R. Savarit classe dans les « fangoides enrichis ».
Nous avons cru bon de faire figurer ici, cette proposition à la suite de notre étude. Elle confirme le bien fondé d’une révision et d’une clarification de la classification.

Contributi sperimentali sul decremento termico in peloidi e sabbie durante l’applicazione terapeutica

P.C. FEDERICI, C. MARCHESI, A. PASQUALIS *
(Parma, Italia)

Le nostre esperienze sulle proprietà termiche dei peloidi e delle sabbie ci hanno permesso di arrivare ad alcune considerazioni che possono rivestire utilità pratica.

— Il decremento della temperatura, nella massa della sabbia o del peloiode, aumenta con l’aumentare del gradiente termico fra la temperatura di partenza del materiale d’im-

* Istituto di Clinica Medica Generale e Terapia Medica, Cattedra di Igiene Medica dell’Università degli Studi di Parma (Italia).

Presse thermale et climatique, 1988, 125, n° 5.
Temperature di partenza più favorevoli per i peloidi sembrano essere fra i 40 ed i 45 °C. Saranno Leggiermente superiori per i peloidi a minor contenuto in sostanze organiche, come i fanghi di salsa, e più basse per le bioglee ed i peladi che ne sono ricchi.

La tecnica migliore per l’applicazione di peloidi per impaccio in ambiente chiuso, è quella di porre a contatto diretto la cute dello strato trattata con uno strato di 5-7 cm di spessore del peloidi e coprire il tutto con Lenzullo, panno di Lana e telo impermeabile. Questa coibentazione consente una ottima conservazione della temperatura del peloide che, alla profondità di 7 cm non scenderà oltre i 4-5 °C in 45 min.; tempo considerato massimo anche per applicazioni poco estese, mentre la durata media massima per applicazioni estese non va, di solito, oltre i 30 minuti. Nello stesso tempo, a 3 cm di profondità, si registra perdite di 2-3 °C; mentre la temperatura di superficie, in tali condizioni sperimentali, aumenta di 2-3 °C.

Nelle applicazioni non coibentate (senza copertura con panno e telo) il decremento termico, nella massa del peloide, è maggiore e si differenzia sensibilmente fra peloi e peloidi essendo più rapido nei peloidi più poveri di sostanze organiche (fanghi vergini e fanghi di salsa) meno in quelli più ricchi (bioglee, limi, fanghi maturo con bioglee o ricchi di idrocarburi). Tali differenze sono tuttavia di valore modesto e dal punto di vista pratico insignificanti. Ricordiamo che peloidi molto ricchi di acqua di diluizione perdono di temperatura più rapidamente a causa dell’evaporazione dell’acqua che sottrae calorie, questo tuttavia è impedito in un fango maturato per effetto della coibentazione e, quando questa manca, dal prosciugamento dello strato più superficiale che crea una « crosta » di pochi millimetri di spessore che, a sua volta, coibenta gli strati più profondi. Questo accade pure per i limi e le bioglee applicati in strato sottile, all’aria aperta, sotto l’irradiazione solare.

Per quanto riguarda le applicazioni all’aperto, come avviene abitualmente per la psammoterapia, per alcune bioglee e per i limi di Cervia e di Eforie-Nord, e le applicazioni al coperto sotto prapatore a raggi infrarossi, ricordiamo che le ricerche di Dimag et Duxel hanno dimostrato che l’adsorbimento e l’assorbimento cutaneo di alcuni elettroliti è molto superiore in queste condizioni e si esaurisce nei primi 30 minuti di applicazione, solo il Ca** sembra continuo ad essere fissato anche oltre questo tempo.

Il confronto dell’incremento e del decremento termico fra i diversi mezzi terapeutici ha consentito di constatare che, appunto, le sabbie acquistano e perdono più rapidamente calore seguite nell’ordine da fanghi, limi e bioglee.

La temperatura massima raggiunta dalle sabbie, dopo 15 ore di permanenza in termostato a 60 °C è quella stessa del termostato (60 °C), mentre i fanghi ed i limi registrano temperature di 59 °C e le bioglee di 57 °C, evidentemente è ancora in atto, in questa fase, l’evaporazione di una parte dell’acqua di imbibizione.

Il decremento delle prime sei ore, in ambiente a 26 °C, è di 11 °C per le sabbie, 10 °C per i fanghi, 8 °C per limi e bioglee, mentre nei primi 30 minuti si hanno rispettivamente: 6 °C per i fanghi, 4,5 °C per le sabbie, 4 °C per le bioglee e 3 °C per i limi.

Le differenze di comportamento fra i vari fanghi, a diverso contenuto in sostanze organiche, conferma che i peloidi meno ricchi di materiale organico si riscaldano e si raffreddano più rapidamente; tuttavia tali differenze sono quantitativamente modeste e non significative non superando 1 °C nell’intervalla di tempo (30-45 min) che interessa la pratica termale.

Dal punto di vista del contenuto in sostanze organiche va ricordato che i fanghi di Monticelli e di Salsomaggiore, da noi ripetutamente sperimentati, contengono scarse tracce di bioglee ma sono invece assai ricchi di idrocarburi.

Può essere interessante rilevare che in alcune nostre grafiche, sia nel riscaldamento che nel raffreddamento fra il 90° ed il 180° min e precisamente fra i 40 ed i 50 °C si ha una variazione nella successione dei vari peloidi in ordine alla temperatura, variazione di non facile interpretazione.

RIASSUNTO

Gli Autori hanno condotto una serie di ricerche sul decremento termico di vari peloidi e sabbie al fine di ricavare elementi per una più corretta applicazione nella pratica peloidoterapia e psammoterapia.

Dalle ricerche condotte risulta che il colore e la granulometria hanno una limitata importanza, dal punto di vista fisico, nelle applicazioni termergiche, mentre per i peloidi hanno sicuramente importanza la percentuale di acqua ed il contegno in sostanza organica, oltre alla composizione chimica del materiale ed alle tecniche di applicazione.

Methodik und Wirkungsmechanismen der vaginalen Moorbrei-Behandlung

R. KOVARIK *
(Bad Aachen)

Eine noch wenig verbreitete Anwendung in der Frauenheilkunde ist die vaginale Moorbrei-Behandlung. Durch Kombination der vaginalen und der sogenannten transkutanen Moortherapie ist eine exaktere Beeinflussung des inneren Genitales zu erzielen.

Eine Spritze mit etwa 120 g Moor wird mit Naturmoor (hier Vagimoran- Bad Wurzacher-Moor) unter hygienischen Bedingungen gefüllt. Die vorbereitete Spritze wird dann in einem Thermostat auf die gewünschte Temperatur erwärmt. Die relativ kleine Menge des Moorbreies wird in Wasser oder in heißer Luft schneller und genauer erwärmt, als das bei einer größeren Menge Moormasse infolge der konduktiven Wärmeleitung möglich ist.
Die auf eine genaue Temperatur (meist 46 °C) vorge- wärmte Moor-Spritze wird vor der Applikation in einen Spritzen-Applikator gelegt, ein Einweg, Einführungsrohr aus Plastik angeschraubt, eine Perlon-Hülle über das Einführungsrohr übergezogen und so einer auf dem gynäkologischen Untersuchungsstuhl liegenden Patientin mühselig in die Scheide eingeführt.

Im Moorbrei wird die Wärme nur durch eine Konduktion von einem Molekül zum anderen geleitet. Auf diese Weise entsteht die besonders angenehme, schonende und dauerhafte fast thermostatische Wirkung eines Moorbades, welches im Vergleich zum Wasser nur sehr langsam auskühlt. Nach eigenen Messungen ist ein 46 °C warmer Moorampom auch nach 90 Minuten immer noch wärmer als die vaginale Ausgangstemperatur. Die Vagina ist gegenüber thermischen Reizen weitgehend unempfindlich, so daß Moortemperaturen zwischen 4°C bis 50°C möglich sind.

Die direkte Wärmeapplikation am inneren Genitale dagegen wirkt auch bei relativ geringer Wärmekapazität des Moorampoms sofort erwärrend, damit einphasisch und exakter, falls wir hauptsächlich Wert auf die lokale Wärmebeeinflussung des inneren Genitale legen.

Umgekehrt wird in einem kalten Bad das Blut auf Grund der Hautvasokonstriktion in den Körperkreis gemprägt, was zur passiven Hyperämie im inneren Genitale führt. Die transcutane Moorapplikationen haben also eine reciprale Wirkung auf die Durchblutung im inneren Genitale im Vergleich zu der Durchblutung der Haut.

Bei der vaginalen Moorapplikation dagegen führt die heisse Applikation sofort zu einer intensiven Blutgefäßerweiterung im Bereich des inneren Genitale, z.B. Verdopplung des Durchmessers der Arteria uterina von 2 mm auf 4 mm. Eine kalte vaginale Applikation bewirkt eine niedrige Durchblutung des inneren Genitales mit einer Blutgefäßerweiterversminderung.

Bei der vaginalen Mooranwendung entfällt jegliche hydrostatische Druckwirkung.

Die genitale Gefäßreaktivität und die lokale neurovegetative Ausgangslage wird durch die Frankenhauserischen vegetativen Ganglien gesteuert. Es ist wahrscheinlich, daß die funktionelle Einstellung der vegetativen übergeordneten Ganglien durch die Wärme/Kälte-Behandlung auch zu nachhaltigen komplexen vegetativen Dauereffekten beitragen kann.

Die konduktive Erwärmung dieses Gebietes stellt einen besonderen Vorteil der vaginalen Moorbehandlung dar. Auf diese Weise wird vermutlich auch die Motilität der glatten Muskulatur der Gebärmutter und der Eileiter, die sekretorische Aktivität des Endometriums und die intratubaren Bewegungen des Fim immunepithelium sowie die endokrinologische Funktion des Ovars beeinflußt.
Durch die vaginale Moorbrei-Behandlung werden trophische Störungen, Hypoplasien und chronische Entzündungen im Genitalbereich, gestörte Gefäßreaktivität und Motilität der glatten Muskulatur sowie sekretorische und endokrinologische Störungen der Ovarialfunktion behandelt.

EINLEITUNG

Örtliche Wärme und Entzündung

INTENSIVE UND ALLGEMEINE ÜBERWÄRMEUNG (GANZKÖRPER-HYPERTHERMIE) UND ENZÜNDUNG

Wird im Tierexperiment die Wärme nicht örtlich appliziert, sondern eine allgemeine Hyperthermie mit Anstieg der Körpertemperatur induziert, so reagieren die experimentell gesetzten Entzündungen in gleicher Weise wie bei einer lokalen Wärmeanwendung. Nach einer sehr intensiven Hyperthermie lassen sich darüber hinaus eindeutige und drastische

TABELLE I. — Balneotherapie und Entzündung : Wirkung örtlicher Wärmeapplikationen auf experimentelle Entzündungsmodelle.

<table>
<thead>
<tr>
<th>Entzündungsmodell u. -mediatoren</th>
<th>Zeitpunkt</th>
<th>Wirkung der Wärme</th>
</tr>
</thead>
<tbody>
<tr>
<td>(Histamin, Serotonin, gering : Kinine)</td>
<td>Nach 2 Std: Sign. Hemmung</td>
<td></td>
</tr>
<tr>
<td>(Histamin, Serotonin)</td>
<td>Nach 4 Std: Kein Effekt</td>
<td></td>
</tr>
<tr>
<td>(Prostaglandine, Kinine, wahrsch. Komplement)</td>
<td>Nach 3 Std: Sign. Hemmung</td>
<td></td>
</tr>
<tr>
<td>4. Carrageeninödem</td>
<td>1 Std: Sign. Hemmung</td>
<td>nicht untersucht</td>
</tr>
<tr>
<td>1. Phase (Histamin, Serotonin, evtl. Kinine)</td>
<td>Nach</td>
<td></td>
</tr>
<tr>
<td>2. Phase (Kinine)</td>
<td>Nach</td>
<td></td>
</tr>
<tr>
<td>3. Phase (Prostaglandin, Kinine, wahrsch. evtl. slow r. subel.)</td>
<td>Nach</td>
<td></td>
</tr>
<tr>
<td>Primär-Reaktion: (ab 1. Tag : Injz. Pforten)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Sekundär-Reaktion: (ab 9./10. Tag : nicht Injz. Pforten)</td>
<td>Hemmung</td>
<td></td>
</tr>
<tr>
<td>(am 21. Tag sign.)</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

LEICHTE HYPERTHERMIE UND ENZÜNDUNG

In der Balneotherapie entsündlicher Leiden werden Körpertemperaturen über 40 °C nur selten angewandt; diese spielen gegenwärtig vor allem eine Rolle in der Onkologie. Hinge-
TABELLE II. — Balneotherapie und Immunsystem: Effekte intensiv überwärmernder Maßnahmen (physikal. Hypothermie) im Tierexperiment.

5. Adjuvans-Arthritis: Dämpfung der Sekundärreaktion, auch bei "prophylaktischer"

Effekte intensiven Fiebers (durch Kühlung des Hypothalamus):
Intensive Stimulation der humoralen Immunreaktionen (durch nichtthermische Faktoren?) (Banet u.M.)

CHEMISCHE WIRKUNGSKOMPONENTEN UND ENTZÜNDUNG

TABELLE III. — Balneotherapie und Immunsystem: Experimentelle Hinweise auf "immunstimulierende" oder "immunmodulierende" Effekte widerwärmender Maßnahmen.

3. Unter einstündiger Hyperthermie beim Menschen (Rektaltemperaturen bis 40 °C) gesteigerte PHA-Stimulierbarkeit (Fabricius u.M. 1978).
18. Erhöhte Mobilität und Phagozytoseaktivität der Leukozyten, auch im Fieber (zahlreiche Autoren).

TABELLE IV. — Balneotherapie und Entzündung: Die Wirkung chemischen Bestandteils auf Beispiel von CO₂ und NaCl.

1. 5 % ige rein. Solke wirkt im Tierexperiment antiophlogist.
2. Reine CO₂-Wasser haben einen entzündungsverstärkenden Effekt.
3. ca. 3 % ige Solke mit niedrigem CO₂-Gehalt wirkt entzündungsvorstärkend.
4. ca. 3 % ige Solke mit hohem CO₂-Gehalt wirkt wiederum antiphlogistisch.

MÖGLICHE ANGRIFFPUNKTE DER THERMISCHEN UND CHEMISCHEN WIRKUNGSKOMPONENTEN DER BALNEOTHERAPIE

Es besteht kein Zweifel daran, daß Entzündungsprozesse durch thermische und chemische Reize modifiziert werden; über die Angriffspunkte kann jedoch gegenwärtig nur spekuliert werden (tabel V). Sehr wahrscheinlich sind es vor allem Entzündungsmediatoren und -modulatoren sowie Zellfunktionen, die die Reaktionspartner physikalischer und chemischer Faktoren der Balneotherapie sind.

Presse thermale et climatique, 1988, 126, no 5.
TABELLE V. — Balneotherapie Entzündlicher Prozesse: Möglichke
Angriffspunkte ihrer thermischen und chemischen
Wirkungskomponenten.

1. Allgemeine Angriffspunkte:
 1.1 Gefässystem (Dilatation, Kontraktion, Mikrozirkulation, Per-
 moabilität, Exsudation)
 1.2 Immunsystem
 1.3 Vegetatives Nervensystem
 1.4 Stoffwechsel
 1.5 Mikroorganismen

2. Lokale Angriffspunkte am Entzündungsprozeß:
 2.1 Gefässystem (s. oben)
 2.2 Zellen und Zellfunktionen (Leukozyten, Monozyten, Thrombo-
 zyten; Proliferation, Lokomotion, Adhäsion, Chemotaxis, Pha-
 gozytose).
 2.3 Freisetzung von Lysosomen und lysosomalen Enzymen
 2.4 Entstehung und Freisetzung von Entzündungsmediatoren
 2.5 Entstehung und Freisetzung von Entzündungsmodulatoren
 2.6 Wirksamkeit von Enzymen, Mediatoren und Modulatoren
 2.7 Pathogenetisch verantwortliche Immunreaktionen
 2.8 Regenerative Prozesse

ALLGEMEINE (ADAPTATIVE) Effekte
DER BALNEOTHERAPIE AUF ENTZÜNDUNGEN

Neben den thermischen, mechanischen und chemischen
Immediatwirkungen sind längerfristige, zeitlich gegliederte
Adaptationsvorgänge für den Therapieerfolg verantwortlich;
diese scheinen auch für Entzündungen zuzutreffen (Hilde-
brandt). Auf fallend ist, daß die Entzündungsaktivität bei
einer klinischen Behandlung von Patienten mit rheumatoide
er Arthritis offenbar einem deutlichen circaseptanen Rhythmus
folgt, auch wenn nur eine intensive physikalische und keine
zusätzliche Balneotherapie durchgeführt wurde (Abb. 1). Es
muß darum diskutiert werden, ob nicht auch eine unspezif-
cische Reizwirkung am längerfristigen antiphlogistischen Ef-
fekt einer Balneotherapie mit beteiligt ist.

SCHLUßFOLGERUNGEN UND AUSBlick

Aufgrund tierexperimenteller Untersuchungen besteht kein
Zweifel daran, daß die verschiedenen Wirkungskomponenten
der Balneotherapie Entzündungen zu beeinflussen vermögen;
diese verantwortlichen Mechanismen sind sichtbar kom-
plexer Natur. Die wissenschaftliche Basis der Balneotherapie
entzündlicher Erkrankungen ist noch relativ schmal; es
ist unbedingt notwendig, sie in Zukunft zu verbreitern. Dabei
sollten die gleichen Methoden angewendet werden, wie in
anderen medizinischen Disziplinen.

Mise au point d'une méthode de mesure
des transferts percutanés «in vitro»
appliquée à la balnéothérapie et à la pelothérapie

Résumé

F. DAVRAINVILLE *, J.F. COLLIN **, C. BURLET ***, M. BOULANGE **
(Saint-Nicolas-de-Port, Nancy)

Reprenant les méthodes « in vitro » utilisées en derma-
logie et en cosmétologie, les échanges ioniques sont mesurés
à l’aide de cellules de diffusion constituées de deux com-
partiments à l’interface desquels est placé un prélevement
de suef. L’étude ne porte que sur un seul ion: le calcium.

* Boursière Attelor Entreprise ARICUR, SAINT-NICOLAS-DE-
PORT.
** Laboratoire d’Hydrologie Thérapeutique, Institut d’Hydrologie,
Faculté de Médecine, NANCY.
*** Laboratoire de Biologie Cellulaire, Faculté de Médecine,
NANCY.

L’utilisation de 40 calcium, isotope radioactif apporté, par le
dosage en scintillation liquide, et en sensibilité aux
mesures et permet le dosage du calcium dans les trois com-
partiments (boue ou eau, peau et milieu intérieur).

L’eau ou la boue testée est mise au contact de la face
externe de la peau qui est maintenue à sa température nor-
male 32 °C par une chambre thermostatée. Pour nous rap-
procher des techniques thermales telles que le bain ou l’illu-
tation locale de boue, nous avons choisi une température
d’application de 45 °C et un temps d’application de 20 mi-

Proxe thermale et climatique, 1988, 125, n° 5.
nutes suivi d’un lavage de la peau. La boue utilisée est saturée en calcium (CaCl₂) additionnée d’une fraction négligeable de calcium radioactif (1 mCi). Le calcul de la capacité d’échange ionique de la boue permet de connaître sa charge en calcium ; selon la boue testée, elle varie entre 10,5 mEq et 95,5 mEq pour 100 g de poids sec. Les expériences avec l’eau ont été menées à des taux de calcium variables : 200 mEq/l, 40 mEq/l, 20 mEq/l, 10 mEq/l.

La peau est prélevée sur des rats femelles atteints de souche Hairless ; elle est soumise sur sa face interne à une solution de trypsin à 0,25 p. cent pendant 20 heures à 4 °C puis grattée au scalpel pour éliminer les tissus dissociés (muscles peauciers, hypoderme). À l’issue de l’expérience, un contrôle histologique est effectué sur coupes de 8 μm débitées au cryostat à partir des fragments de peau congelés pour s’assurer de l’intégrité de l’épiderme. Pendant toute la durée de l’expérience soit 6 heures, le côté viscéral du fragment de peau est baigné par une solution dont la pression osmotique a été ajustée à celle du plasma (300 mOsm) par du Dextrane 70, elle contient une quantité de calcium correspondant à la fraction ionisée du sang soit 2,9 mEq/l. Sa pression hydrostatique est de 400 mm H₂O ce qui est généralement admis comme caractéristique de la pression capillaire sous-cutanée. Des prélèvements sont pratiqués à 30 mn, 1 h, 4 h et 6 h et leur dosage permet de mettre en évidence l’existence d’un passage calcique de l’eau ou de la boue vers le milieu interne.

Le taux de passage : entre 0,15 et 3,4 p. cent sont ceux déjà indicés par d’autres auteurs ; ces taux sont souvent atteints dès la 30e minute et évoluent peu dans les heures suivantes. Quand la concentration de l’eau varie de 200 à 10 mEq/l, le passage calcique observé ne varie pas significativement. L’utilisation de boues de compositions argileuses variable (kaolinite pure K₁₀₀ B₀, bentonite pure K₉₀ B₁₀₀ et différents mélanges K₇₅ B₂₅, K₉₀ B₃₀ et K₂₅ B₇₅) semble montrer que la bentonite est l’élément le plus déterminant sur le passage calcique. Cependant pour optimiser un produit pélotherapique, il faut tenir compte, en plus des transferts transcutanés, des pouvoirs calorifiques et de la plasticité des différents mélanges.

Cette méthode simple et rapide permet la mesure des transferts ioniques entre les eaux ou les boues thermales et le milieu interne. Les résultats obtenus confirment la fonction réservoir de l’épiderme dont la saturation est atteinte dans nos conditions expérimentales dès la concentration calcique de 10 mEq/l.

Capacités thermiques des péloïdes minéraux

Résumé

T. FERRAND, B. GUILLET *

(Nancy)

Parmi les mécanismes explicatifs des effets thérapeutiques des péloïdes, la capacité calorifique demeure le facteur essentiel. Le thérapeute soucieux d’employer un péloïde de qualité se préoccupe avant tout de son aptitude à conserver longtemps une température initialement fixée aux environs de 50 °C. Pour estimer la qualité thermique de tout péloïde minéral, c’est-à-dire constitué de sables, limons et argiles, nous avons utilisé deux types d’analyse :

— Mesure de la capacité calorifique massique (cp) par calorimétrie estimant la quantité de calories que libère le péloïde chauffé en se refroidissant.

— Mesure de la cinétique de refroidissement entre 50 °C et 25 °C d’un péloïde.

D’après ces analyses, effectuées sur des séries de péloïdes de granulométries et de viscosités variées, il apparaît clairement que la qualité thermique d’un péloïde dépend uniquement du pourcentage d’eau absorbée par celui-ci pour être à sa viscosité d’emploi. Les facteurs intrinsèques au péloïde conditionnant sa capacité d’adsorption d’eau, donc sa valeur thermique sont les suivants :

— La granulométrie : les plus fines (argileuses limoneuses sableuses) absorbant des quantités plus importantes d’eau.

— La qualité de l’argile : les gonflantes (Bentonite, Montmorillonite...) demeurant plus avides d’eau que les non gonflantes (Kaolinite).

Nous avons ainsi montré qu’un bon péloïde minéral, au niveau thermique, c’est-à-dire possédant une forte capacité calorique massique et une cinétique de refroidissement lente, doit être presque exclusivement constitué d’argile, au détriment des sables et limons, et préférentiellement d’argiles gonflantes ; rappelons néanmoins que le maniement des argiles gonflantes pures est délicat et peut amener à des incompatibilités chimiques avec certaines eaux thermales.
Session 12
La ressource thermale

Le patrimoine hydrologique

Réflexions sur la protection de la ressource thermale

B. BLAVOUX *
(Avignon)

Les sources minérales françaises constituent un patrimoine à protéger. La conception moderne du circuit thermominéral entraîne une nouvelle stratégie des captages pour mieux protéger et mobiliser la ressource. Quelques réflexions très générales sur la protection quantitative dans la zone d’alimentation, qualifiée d’éloignée et sur la protection qualitative rapprochée dans la zone d’émergence sont présentées ci-après.

UNE CONCEPTION MODERNE DU CIRCUIT DE L’EAU MINÉRALE

Le circuit minéral : une séquence du cycle de l’eau

Il est acquis aujourd’hui que les eaux minérales définies ici comme des eaux spécialement d’intérêt médical, ont une origine météorique. Ce sont des eaux de pluie infiltrées qui se minéralisent et, ou se réchauffent en profondeur et remontent rapidement à la surface à la faveur d’accidents ou structures géologiques suivant un schéma type qui sera détaillé plus avant.

L’eau minérale est donc une ressource minière renouvelable et on doit considérer le circuit minéral comme une séquence du cycle de l’eau présentant des interactions hydrodynamiques, hydrochimique et hydrobiologique avec son environnement et caractérisée par une fonction de transfert, impulsion (alimentation) - réponse (écoulement). La connaissance de cette fonction est utile pour bien gérer et protéger la ressource minérale et doit être abordée sous ses deux aspects :

— quantitatif, avec la transmission très rapide des différences de charge ou de pression,
— qualitatif, avec le déplacement de l’eau et des substances à des vitesses d’écoulement très lentes.

Le schéma du circuit de l’eau minérale

L’originalité hydrogéologique des sources thermales et miniérales est d’amener en surface des eaux dont la température et/ou la composition chimique impliquent une circulation en deçà de la zone de décompression superficielle. L’émergence naturelle de cette eau profonde est due à l’existence d’un court circuit hydraulique à forte perméabilité entre la profondeur et la surface résultant généralement d’une fracturation liée à un accident géologique récent [3].

La schématisation d’un circuit hydrothermal fait donc apparaître (fig. 1) :

— une aire d’alimentation avec infiltration d’eau météorique ;
— un réseau d’infiltration, vaste en volume, mais à vitesses d’écoulement très lentes ;
— un axe vertical de collecte agissant en drain et autorisant la remontée rapide de l’eau minérale. Au cours de
cette remontée, l’eau minérale conserve, pour l’essentiel, la température et la composition chimique qu’elle avait en profondeur. Sa pression diminue, en restant supérieure néanmoins aux aquifères qu’elle traverse à faible profondeur (sources artésiennes).

Les phénomènes à l’émergence

Au cours de la remontée, l’eau minérale traverse (fig. 2) :

— des terrains de plus en plus froids et elle perd des calories ;

— des milieux à perméabilité de plus en plus forte et le tronc thermal principal tend à se ramifier en plusieurs branches, que le milieu soit fissuré ou poreux.

Ainsi, un site hydrothermal est-il généralement caractérisé non pas par une seule émergence mais par un groupe d’émergences appartenant à un même système profond et donc à la même famille géochimique. Selon le contexte géologique et hydrogéologique du site thermal on distingue :

— la (ou les) sources principales peu sujettes aux fluctuations hydrodynamiques de leurs émergences et caractérisées par un maximum de température et de concentration chimique ;

— la (ou les) sources secondaires sujettes à fluctuations sensibles portant sur la température et affectées d’un éventuel mélange avec des eaux de surface ou les nappes dites « libres ». La pollution qui menace ces aquifères en zone urbaine, rend ces émergences secondaires potentiellement vulnérables ;

— les divergences du tronc thermal dans les aquifères de surface (divergences non visibles en surface) qui se signent par des anomalies de température, ou de composition chimique au sein de ces aquifères.

PROTECTION ÉLOIGNÉE :

CONNAISSANCE DE L’AIRE D’ALIMENTATION

La protection éloignée consiste à veiller à ce que l’alimentation du système soit conservée. Cette protection est surtout quantitative et nécessite bien évidemment de connaître la zone d’alimentation.

Localisation de la zone d’alimentation

L’identification de la zone d’alimentation se fait d’abord avec les outils de la géologie (cartographie, géologie structurale, géophysique, hydrogéologie et bilans, géochimie). L’étude géologique permet de proposer un schéma de circulation, d’envisager la géométrie du réservoir, mais laisse souvent une grande latitude dans la définition des limites du système hydrominéral. Elle aboutit même quelques fois à l’énoncé de plusieurs hypothèses de circulation fondamentalement différentes et pourtant compatibles avec les évidences de terrain. Pour préciser l’aire d’alimentation d’une source thermominérale, il existe une méthode isotopique, élégante, efficace et facile à mettre en œuvre, qui utilise le tracage naturel des eaux par l’oxygène 18. Cette technique est fondée sur les variations des teneurs en isotopes stables des précipitations, en fonction de la température moyenne au sol. Cette thermo-
dépendance entraîne un marquage des pluies en oxygène 18 comme en deutérium, en fonction de l’altitude. La localisation des zones d’alimentation consiste donc à situer les te
neurs caractéristiques des émergences sur une droite locale de variation, concentration en isotope stable - altitude, construite à partir des teneurs des pluies (exemple d’Evian) [1, 2] ou mieux à partir de celles de sources sélectionnées à diffé-
rentes altitudes et dont le bassin versant est parfaitement défini. Dans l’exemple du Mont-Dore (fig. 3), si on projette les teneurs moyennes des sources minérales du Mont-Dore et de la Bourboule sur la droite construite à partir des sources superficielles choisies à différentes altitudes sur le massif du Sancy [6], on définit une aire d’alimentation à l’altitude de 1.500 m pour le premier groupe minéral et de 1.200 m pour le second, ce qui est compatible avec les structures géologiques et la morphologie.

Evaluation du temps de transit

Du temps de transit de l’eau minérale dans le réseau d’alimentation, dépend la vulnérabilité éloignée du système. Parce que les temps de transit sont généralement très élevés, de quelques dizaines d’années à vraisemblablement quelques dizaines de milliers d’années, on considère que

Presses thermale et climatique, 1988, 125, n° 6.
et sur la présence fréquente dans l’eau minérale de CO₂ magmatique avec un carbone 14 mort.

Principes de la protection éloignée

Cette protection nécessite d’abord une bonne connaissance de la zone d’alimentation. Elle consiste principalement à veiller à ce que des transformations irréversibles ne portent atteinte au volume d’eau infiltrée. Parmi ces atteintes possibles, on citera l’urbanisation privilégiée le ruissellement, la déforestation, les aménagements hydrauliques comme le drainage agricole ou les barrages entraînant des transferts d’eau hors de la zone d’infiltration, les forages géothermiques. Il convient donc de réaliser pour chaque site des expertises définissant les impacts possibles sur la zone d’alimentation et d’apporter aux thermalistes des garanties sur les possibilités de maîtrise d’installations projetées.

PROTECTION RAPPROCHEE

La protection rapprochée intéresse la zone d’émergence où le drain thermal principal tend à se ramifier pour donner naissance à une source principale caractérisée par un maximum de température et de composition chimique et des sources secondaires sujettes à fluctuation et affectées d’un mélange avec des eaux de surface, donc potentiellement vulnérables à la pollution. La protection rapprochée est d’abord qualitative.

Mise en évidence des mélanges dans la zone d’émergence

Pour étudier l’hypothèse d’un mélange binaire, on examine les corrélations entre éléments peu réactifs de tous les points d’eau de la zone d’émergence, c’est-à-dire entre éléments pour lesquels les échanges entre la roche et la solution aqueuse refroidie et diluée sont faibles ou nuls. Parmi ces éléments, les plus intéressants sont le chlorure, le sodium, le lithium et les isotopes de la molécule d’eau, à un degré moindre les sulfates si les eaux ne sont pas sulfurées.

Sur un diagramme concentration-concentration, si les points représentatifs s’alignent bien sur des droites (corrélation très satisfaisante) ceci suggère qu’un simple mélange entre une eau chaude minéralisée et une eau froide peu minéralisée de surface règle la géochimie du système de sources. On peut alors calculer le pourcentage de dilution de l’eau minérale et reconstituer les caractéristiques de la composante profonde avant mélange.

La technique du forage pour une meilleure protection rapprochée

Une méthode de prospection et de captage qui prévaut aujourd’hui consiste à réaliser un forage dont la cible est le drain thermal principal avant sa ramifications en plusieurs branches à une profondeur généralement comprise entre 50 et 150 mètres. Ce souci d’isoler la venue hydrominérale...
correspondant au gisement et d’empêcher tout mélange avec des eaux superficielles d’une autre nature et vulnérables à la pollution est un gage d’une bonne protection - développement de la ressource. Si cette technique de captage présente de nombreux avantages, elle doit être employée avec discernement car elle comporte aussi quelques dangers.

Isoler la venus hydrominéral profonde et éliminer ou limiter les mélanges avec les eaux superficielles paraît être l’acte le plus efficace de protection rapprochée sur une aire d’émergence où l’urbanisation et les activités humaines ont souvent tendance à se développer. La nouvelle ressource aura une minéralisation et une température au moins égales sinon supérieures à celle de la source la plus riche du site. Mais il est des cas où le médicament thermal tire justement ses propriétés du mélange et d’une évolution avec les eaux superficielles, et cette affirmation doit être nuancée. C’est le cas par exemple de sources sulfureuses après oxygénation aussi bien par mélange avec une composante superficielle oxygénée qu’au contact de l’oxygène de l’air.

L’établissement d’un court circuit entre le tronc minéral et la surface réduit les pertes de charge dans la zone d’émergence et permet généralement l’interception d’un débit supérieur en éliminant les venues auparavant diffuses. L’installation d’un pompage sur un forage même artésien peut permettre aussi de satisfaire un débit de pointe saisonnier. Mais cette meilleure mobilisation de la ressource souvent de façon artificielle par pompage, nécessite une surveillance hydodynamique renforcée et une gestion raisonnable. L’équilibre qui existait entre les entrées (alimentation) et les sorties (écoulement) du système tant qu’il fonctionnait avec des exutoires naturels, ne doit pas en effet être rompu par des prélèvements excessifs au risque d’altérer jusqu’à la composition chimique de l’eau minérale par drainage des aquifères superficiels dont on voulait précisément se protéger.

REFERENCES

La connaissance et la protection d'un système thermominéral

M. LOPOUKHINE *
(Villeurbanne)

Les eaux minérales ou thermales constituent la matière première sur laquelle se fondent les industries du therma-lisme et de l'embouteillage d'eau.

Ces eaux sont avant tout des anomalies naturelles, fragi-les, au sein de systèmes hydrogéologiques classiques ; leurs propriétés physiques et chimiques particulières en font la seule ressource du sous-sol dont l'exploitation soit soumise à la délivrance d'arrêtés d'autorisation de la part de l'Acade-mie de Médecine.

Les paramètres physico-chimiques qui les caractérisent (température, débit, qualité chimique et bactériologique) doi-vent donc être aussi constants que possible et sont l'objet des mesures de contrôle et de protection imposées par l'ad-ministration.

SYSTÈME THERMOMINÉRAL

Nombre de travaux scientifiques datant des dernières décennies ont démontré que les eaux minérales sont en réa-lité des eaux de pluie qui, s'infiltrent en un lieu donné, sui-vent, à la faveur d'une convergence de facteurs géologiques très variés, un cheminement souterrain plus ou moins pro-fond, plus ou moins rapide.

Au cours de ce transit souterrain, elles s'échauffent et progressivement, acquièrent une minéralisation originale, aux dépens des minéraux constituant les roches au sein desquelles elles percolent.

Puis, dès qu'un concours de circonstances favorables (frag-ctures, topographie, pression, température) le permet, elles amorcent leur remontée, jusqu'à aboutir en surface sous forme de sources.

Température, composition chimique et débit constants sont donc la conséquence de la circulation de ces eaux minérales dans des domaines profonds, puis de leur émergence en sur-face ou travers d'aquifères avec lesquels elles ne présentent en principe aucun point commun.

Dans la réalité il est difficilement concevable qu'une telle eau profonde puisse effectivement se frayer une voie jusqu'en surface, sans être perturbée par les aquifères suc-cussifs qu'elle est amenée à rencontrer.

C'est ainsi que nombre de sources ayant servi de réfé-rence aux arrêtés d'autorisation d'exploitation initiaux, sont en réalité des mélanges naturels entre un pôle minéral et thermal profond, et une proportion, généralement faible, d'eau banale superficielle (nappe phréatique ou aquifère peu profond).

Cette fraction d'eau banale est malheureusement beau-coup plus sensible aux effets des fluctuations hydrogéolo-giques saisonnières, et de la pollution de l'environnement par le tissu urbain qui se développe inévitablement autour des sources d'eau minérale ; cette fraction d'eau douce, dans le mélangage naturel que constitue une source d'eau minérale, est la cause de la plupart des fluctuations de qualité, notamment bactériologiques, pouvant affecter les sources d'eau minérale.

CAPTAGE DE L'EAU MINÉRALE PAR FORAGE

Initialement, et ce jusqu'à il y a quelques décennies, les sources étaient captées par puits, galeries ou tranchées ; on suivait la veine minérale.

Le développement de la fréquentation des stations, le développement des techniques et des exigences de qualité qui s'ensuivent, ont concouru à la généralisation progressive de la technique du captage par forage : ce dernier, consti-tuant un véritable court-circuit entre le gisement profond et la surface présente les avantages suivants :

— la possibilité d'augmenter la productivité de la source ;
— la possibilité d'assurer valablement une protection ef-ficace de l'eau minérale face à tous les risques d'agressions polluantes générées par l'environnement urbain et propagées par les eaux superficielles.

Cette technique représente donc un progrès important en termes de sécurité d'exploitation.

ÉTUDE DU SYSTÈME THERMAL

On objecte souvent que le captage par forage représente un risque de voir disparaître l'eau minérale.

En réalité, l'évolution des technologies a permis ces der-nières années d'enrichir considérablement la panoplie des précautions à mettre en œuvre au cours de cette phase du développement d'une station.

La mise en œuvre de ces techniques permet maintenant de considérer comme négligeable, le seul risque réellement inammissible, celui d'une perturbation irréversible des caractéristiques de débit et de qualité de la source. Plusieurs pré-cautions sont à prendre.

Une étude et une compréhension du système thermal

L'étude conjointe de la chimie des sources minérales et de leur environnement hydrologique permet généralement de répondre aux questions suivantes :

— Quelle est l'origine de l'eau minérale ?
— A quelle profondeur a-t-elle circulé et quel est son âge (durée du cycle souterrain) ?
— Quelles sont ses caractéristiques chimiques en pro-

* Bureau de Recherches géologiques et minières, 29, boulevard du 11 Novembre, B.P. 6083, 69664 VILLEURBANNE CEDEX.
fondeur, répondent-elles aux desiderata de l’exploitant ?
- Quelle est l’ampleur de l’influence perturbatrice de l’environnement hydrogéologique ?
- Où et par quels mécanismes s’effectue la remontée de cette eau vers la surface ?
- Quelles sont les relations entre cette zone de remontée (d’alimentation des sources) et les griffons de surface ?

La détermination des sites les plus favorables pour un captage par forage

Celle-ci s’effectue généralement par une étude de la dispersion dans les sols des gaz accompagnant les eaux minérales profondes (radon et dioxyde de carbone), couplée avec une analyse de la fracturation des roches.

On déduit ainsi la géométrie profonde des fractures servant à amener l’eau jusqu’en surface.

Une fois réunies toutes ces informations, on dispose de tous les éléments permettant de décider de l’opportunité de procéder à un captage par forage avec les meilleures chances de succès.

De grands progrès ont également été accomplis dans le domaine du forage proprement dit, par la généralisation du forage à l’air comprimé (ou forage au marteau fond de trou) qui par rapport aux autres techniques présente notamment les avantages suivants : coût généralement moindre, possibilité de détecter instantanément les venues d’eau recoupées et accès à une information instantanée concernant leurs caractéristiques chimiques.

Parallèlement à ces travaux, les griffons existants sont équipés d’appareillage de suivi en continu de leurs caractéristiques essentielles (débit, température, conductivité électrique, qui est une fonction de la minéralisation totale).

Ce suivi continu, permettant une détection instantanée des perturbations momentanées pouvant être engendrées par les travaux de forage, contribue fortement à améliorer les conditions de sécurité dans lesquels ils se déroulent.

C’est ainsi que de tels forages ont pu être réalisés en pleine saison thermale, à quelques dizaines de mètres de l’établissement, sans aucune perturbation de son fonctionnement.

CONCLUSION

Les enjeux sanitaires et industriels de l’exploitation des eaux minérales imposent une protection stricte de la qualité de ces eaux ; une partie de cette protection est assurée par la législation, mais face aux agressions polluantes induites par l’environnement de plus en plus urbanisé caractérisant la majorité des sources d’eau minérale en France, la solution technique la plus viable passe par un captage par forage qui lui-même ne peut être mis en œuvre sans une compréhension approfondie du fonctionnement du système minéral que l’on envisage d’exploiter.

Ce point de passage, inéluctable, de l’essor d’une station constitue la seule garantie sérieuse d’une sécurité d’exploitation satisfaisante, tant du point de vue de la gestion de la ressource que du point de vue de la stabilité de ses qualités chimiques et bactériologiques.

Mise au point d’une méthode de détection de l’arsenic in situ

C. VAN DEN BERGHE *, R. LAUGIER *, J.F. MULLER **,
C. BURLET ***, A. BURLET ***,
(Châtenay-Malabry, Metz, Nancy)

Cette étude menée à la demande de la station thermale de La Bourballe réunit trois équipes universitaires ayant chacune une fonction précise :
- le laboratoire d’Hydrologie de la Faculté de Pharmacie de Nancy dirigé par M. le Professeur C. Burlet pour la préparation des échantillons ;
- le laboratoire d’Histologie de la Faculté de Médecine de Nancy dirigé par M. le Professeur C. Burlet pour la préparation des échantillons ;
- le laboratoire d’Hydrologie de la Faculté de Pharmacie de Châtenay-Malabry dirigé par M. le Professeur A. Laugier pour les contrôles des teintes arsenicales ;
- le laboratoire de Spectrométrie de Masse et de Chimie Laser de la Faculté des Sciences de Metz dirigé par M. le Professeur J.F. Muller pour les analyses par microsonde LAMMA.

L’objectif de cette étude est de mettre au point une méthode de détection in situ de l’arsenic en milieu biologique, afin de mieux connaître son devenir chez l’animal et de visualiser ses sites de fixations cellulaires.

La technologie dont nous disposons est une microsonde à impact laser couplée à la spectrométrie de masse (LAMMA).

* Laboratoire d’Hydrologie (Pr R. Laugier), Faculté de Pharmacie, CHATENAY-MALABRY.
** Laboratoire de Spectrométrie de Masse et de Chimie Laser (Pr J.F. Muller), Faculté des Sciences, 57000 METZ.
*** Laboratoire d’Histologie (Pr Burlet), Faculté de Médecine, 54000 NANCY.

Presses thermale et climatique, 1988, 125, n° 6.
Cette méthode récemment mise au point, permet la détection des éléments constitutifs d’échantillons solides, d’origine minérale ou organique. Elle n’a jamais été utilisée dans le cas de l’arsenic et est encore très peu pratiquée sur des échantillons biologiques.

APPAREILLAG

La microsonde LAMMA comporte essentiellement quatre éléments :

- deux faisceaux lasers ;
- un microscope optique ;
- un spectromètre de masse à temps de vol.

Le premier de forte puissance de type Yag-Nd délivre une impulsion (10 nanoseconde) et crée au point d’impact un microplasma par échauffement brutal de la matière, réalisant ainsi l’ionisation. Deux doubleurs de fréquence convertissent la longueur d’onde infra-rouge initiale, 1 064 nm, en longueur d’onde UV 266 nm, afin d’améliorer le rendement de l’ionisation.

Le second à Hélium-Néon, laser pilote, émet dans le visible à 633 nm (couleur rouge) et permet de cibler l’impact du premier.

L’échantillon déposé sur une grille de microscopie électronique est observé au moyen d’un microscope optique ; ce dernier permet de focaliser les faisceaux à l’endroit désiré.

Les ions créés par l’ionisation laser sont analysés par spectrométrie de masse à temps de vol. L’arrivée d’un ion en fin de trajectoire se traduit par un signal électrique. La durée du vol est directement proportionnelle à la masse de l’ion. Chaque signal, correspondant à la présence d’un élément dans l’échantillon, est amplifié puis enregistré. L’ensemble des signaux constitue le spectre de masse de l’échantillon. Les ions les plus légers se trouvent en début de spectre, les plus lourds en fin.

APPLICATION : DÉTECTION DE L’ARSENIC EN MILIEU BIOLOGIQUE

Les nombreuses difficultés rencontrées pour la mise au point de cette technique sont liées essentiellement à la méthodologie d’échantillonnage.

Avant analyse, les prélèvements biologiques doivent subir un prétraitement, afin de conserver leur intégrité.

Nous avons tout d’abord eu recours aux techniques de préparation utilisées en microscopie électronique. La détection de l’arsenic s’est avérée impossible. Actuellement nous utilisons une technique de cryogénie ; les résultats sont très satisfaisants.

Le protocole retenu est le suivant : les prélèvements sont effectués à partir d’animaux traités, ayant reçu de l’arsenic, et d’animaux témoins, le sang est directement déposé sur une grille-support. Les tissus sont traités par cryotomie :

- congélation instantanée des échantillons en azote liquide ;
- réalisation des coupes de tissus à — 80 °C ;
- dépôt des cryocoupes sur grille-support.

L’analyse LAMMA nous donne pour chaque échantillon une série de spectres où nous recherchons le signal 75 traduisant la présence d’arsenic.

RÉSULTATS

Une première série d’analyses a été pratiquée sur des échantillons provenant d’animaux traités par l’eau thermale, avec constitution d’un lot témoin ne subissant aucun traitement.

L’augmentation du signal 75 traduit la présence d’arsenic dans le sang de l’animal traité, comparativement à celui du témoin. Les résultats obtenus à partir des tissus lyophilisés sont également très encourageants. Les échantillons provenant des animaux témoins contiennent peu d’arsenic et donnent une faible réponse par microsonde LAMMA. Ceux issus des animaux traités sont fortement imprégnés d’arsenic ; la réponse obtenue par analyse LAMMA est beaucoup plus intense.

La corrélation entre la teneur en arsenic et la réponse par microsonde LAMMA n’est pas parfaite. La qualité de l’analyse dépend étroitement de la nature de l’échantillon.

Une deuxième série d’analyses a été réalisée sur des tissus provenant d’animaux intoxiqués par du cacodylate de sodium, au laboratoire d’Histologie de la faculté de Médecine de Nancy.

Les prélèvements ont été traités par cryotomie ; les résultats sont comparables à ceux obtenus avec la première série d’analyses, la cryocoupe étant en fait une coupe de lyophilisat. L’étude des spectres obtenus par analyse LAMMA de tissu hépatique et de rate met en évidence une augmentation significative du signal 75 (détect de l’ion As) pour les tissus provenant de l’animal traité, comparativement au témoin.

CONCLUSION

Actuellement, nous maîtrisons les difficultés liées à la préparation des échantillons.

Le travail va venir va consister à déterminer plus précisément le seuil de détection de la microsonde et à améliorer la sensibilité de la technique.

Le laboratoire LSMCL de la Faculté de Metz doit s’équiper prochainement d’un appareil de visualisation qui permettra de retrouver les sites de fixation de l’arsenic au niveau cellulaire voire subcellulaire.
Chaudes-Aigues

Film

J.P. GIBERT, R. BROUSSE *
(Orsay)

Il s’agit d’un film couleur, d’une durée de 18 minutes, produit par le Service du Film de la Recherche Scientifique (1985).

Chaudes-Aigues, ville thermale au nom évocateur, a un chauffage géothermique, depuis le Moyen Âge. Dans un contexte géologique favorable, le circuit des eaux, leur équilibre ionique dans le réservoir profond puis leur remontée sont établis au moyen de techniques et de données géochimiques tour à tour présentés.

Les eaux les plus chaudes de France sont utilisées dans l’établissement thermal comme pour le chauffage grâce à la mise en œuvre de moyens de plus en plus performants.

La surveillance des installations

Hygiène et surveillance des installations thermales

Résumé

P. HARTEMANN *
(Vandœuvres-les-Nancy)

Les installations thermales sont en raison de leur finalité extrêmement exposées à des difficultés dans le domaine de l’hygiène, tant sur le plan chimique que microbiologique. En effet, elles cumulent les facteurs favorables à ce type de problèmes : milieu hydrique, climatisation, réception du public, patients souvent affaiblis et parfois infectés, absence de traitement désinfectant pour les eaux thermales, balnéothérapie et pelothérapie, grandes étendues à entretenir, etc. Il convient donc d’établir des barrières techniques et institutionnelles permettant de maintenir une qualité sans reproche pour les usagers. L’ensemble des communications proposées démontrent parfaitement la variété des questions qui se posent au gestionnaire.

Les piscines thermales dont l’eau ne peut contenir de désinfectant ne sont pas soumises à la législation générale des établissements de bains destinés à recevoir du public et pourtant la qualité de l’eau doit y être irréprochable. Seules des approches particulières permettent de répondre à cette exigence : hydraulique spécifique nécessitant une excellente conception du circuit et des bassins, filière de traitement ne faisant pas appel à des procédés pouvant modifier des propriétés des eaux, entretien méticuleux des installations et propreté rigoureuse des moyens et du personnel.

Les surfaces doivent être correctement conçues (matériaux adéquats) et accessibles à des procédures d’entretien bien codifiées car leur décontamination fait appel pour être réelle à des produits efficaces et à des méthodes strictement définies et appliquées.

L’atmosphère est particulièrement bien propice à des

* Laboratoire d’Hygiène et de Recherche en Santé Publique, Faculté de Médecine, B.P. 184, 54500 VANDOEUVRE-LES-NANCY.
désagrément potentiels en raison de l’humidité ambiante, à la température voire du confinement existant. Le développement de certaines espèces bactériennes et fongiques doit être combattu de façon spécifique en raison du risque de développement très élevé dans des conditions qui leur sont très propices. Les paramètres chimiques et physiques de la qualité de l’air feront eux aussi l’objet d’une attention approfondie afin de garantir le confort des usagers.

— Les matériaux et les installations destinés à recueillir, transporter et contenir les eaux minérales méritent des études précises en raison des caractéristiques physico-chimiques particulières des eaux thermales accélérant corrosion et bioprolifération et des durées de contact qui peuvent parfois être fort longues comme dans le cas des eaux embouteillées.

Il apparaît ainsi que ce vaste domaine, dont d’ailleurs certains champs sont encore mal couverts, mérite une attention approfondie des experts, des concepteurs, des équipes de recherches et des gestionnaires seule garante de la qualité des prestations et de la satisfaction des usagers.

Hygiène des piscines de mobilisation dans les stations thermales

F. BESANÇON *

(Paris)

La kinébalnéothérapie, c’est-à-dire la rééducation en piscine, est née à Roscoff, puis dans deux stations thermales favorisées par leur énorme débit. Le succès de cette technique, sa diffusion dans de nombreuses autres stations, posent à présent un problème d’hygiène. Il faut aborder entre des contraintes opposées : dans l’esprit des malades, dans l’opinion médicale, dans les obligations des établissements thermaux, et dans les règlements.

L’opinion médicale est convaincue de la valeur de la balnéothérapie. Dans les bons résultats, comment discerner ce qui revient à la spécificité de l’ensemble de la cure dans la station, ou à la spécificité des eaux elles-mêmes utilisées au cours de la kinébalnéothérapie ? Comment déterminer quelle proportion d’eau thermale serait acceptable dans la piscine pourvu que les autres pratiques de la cure restent authentiquement thermales ?

Les établissements thermaux savent que tout malade apporte 30 à 200 millions de germes. Ils n’ont pas beaucoup d’autorité pour imposer une toilette individuelle, pour imposer un séchage minutieux de la peau, et un entretien hygiénique des maillots. Les risques hygiéniques des malades ne sont pas exactement comparables à ceux des clients des piscines publiques. La tête et le cou des malades ne sont pas immergés. On peut considérer à certains égards les malades comme fragiles, mais à l’opposé un certain degré de risque est acceptable, comme dans toute thérapeutique.

Les règlements encouragent le reproche d’être trop laxistes ou trop rigoristes. Sont-ils laxistes, dans la mesure où les normes des piscines publiques ne sont pas comparables aux piscines thermales ? Sont-ils rigoristes, en ce qu’ils prohibent toute désinfection, tout mélange ? D’autre part, les critères bactériologiques de qualité des eaux de boisson ne sont pas les plus appropriés ici. Les autorités multiplient les injonctions d’analyses, qui coûtent cher, sans faire progresser ni l’hygiène, ni la science.

Parmi les remèdes que l’on peut imaginer, certains sont inappropriés. On sait à présent que les filtres ont généralement un effet aggravant, de même que les édredons métalliques. L’ozone et les rayons ultra-violets n’ont aucun effet rémanent, et cela les condamne quand on sait que les centaines de millions de germes apportés par chaque malade obligeraient à réservé 75 m³ d’eau à chacun, si l’on voulait que les combats bactériens soient à égale distance entre les normes des piscines publiques et celles des baignades publiques.

Dans cette situation, nous avons adopté une méthode peu traditionnelle en France, mais très classique en Amérique. Nous avons suscité la formation d’un Comité représentatif des professions et des autorités scientifiques concernées, mais sans y mêler l’administration. Ce Comité a travaillé pendant 2 ans, et finalement il a fait connaître ses conclusions à l’administration. Les propositions nouvelles contenues dans ce rapport concernent la séquence des soins, la transformation des règlements, et la mise en œuvre.

* Institut d’Hydrologie et de Climatologie, Hôtel-Dieu, 75181 PARIS CEDEX 64.

Presses thermales et climatiques, 1988, 125, n° 5.
La séquence des soins doit être regardée comme un ensemble indissociable. Le temps le plus important est, de loin, l'hygiène du malade avant l'entrée dans la piscine. Un avis médical, un certificat de non contre-indication devraient être obligatoires. Le lavage devrait être à la fois une obligation et un plaisir, et il faudrait stimuler dans ce sens l'imagination des constructeurs.

Le troisième temps de la séquence serait d'établir un contact thermal authentique à la sortie de la piscine, de préférence par une douche en pluie avec de l'eau thermale native. Ainsi la séquence de soins restera-t-elle un authentique acte thermal.

Les deux derniers temps seraient le séchage de la peau, et l'hygiène du maillot, y compris son séchage.

Une transformation des règlements est nécessaire pour atteindre ces objectifs. L'appellation de l'eau de la piscine pourrait être eau thermo-minérale avec adjonctions réglementaires, à l'opposé des règlements actuels qui interdisent les mélanges d'eaux. Les règlements devraient traiter du certificat médical, de la limitation de l'affluence, de l'hygiène des hôtels. En vue des normes bactériologiques, il conviendrait de distinguer les risques, leur réalisation, et les indicateurs bactériologiques de risques. Les objectifs à atteindre, à notre avis, devraient être de nature épidémiologique plutôt que bactériologique ou chimique. Les règlements devraient tenir compte de la diversité des sources.

La mise en œuvre de ces propositions, si elles sont agréées, serait à prévoir par étapes, chacune avec leur évaluation, en particulier épidémiologique.

En conclusion, nous ne proposons ni de nous satisfaire de la situation actuelle, ni à l'opposé, d'inquiéter le public alors qu’au fond les incidents paraissent rares, encore qu’aucune donnée épidémiologique fiable ne soit disponible. Les propositions émises par le Comité professionnel ont fait l’objet de critiques basées sur des impératifs respectables certes, mais eux-mêmes en contradiction avec d’autres impératifs. Il nous paraît urgent que les débats théoriques en cours depuis 1981 ne retardent par le début des expérimentations comparatives. Les expériences qui s’imposent ne seront licites qu’au prix d’une adaptation, ou besoin temporaire, des règlements.

Contrôles bactériologiques des eaux de piscines thermales

A. RAMBAUD *, D. PEPIN **, J. ALAME **,
C. GRAVINA *

Montpellier, Clermont-Ferrand)

Chaque individu, lors d’un bain dans une eau, quelle qu’elle soit, y apporte sa contribution:
— de matières organiques et minérales dissoutes et en suspension ;
— de bactéries qui prolifèrent compte tenu des conditions favorables qu’elles y trouvent (température plus ou moins élevée, substrats divers...).

Si, face à cette inéluctable contamination et aux risques sanitaires inhérents, le décret du 7 avril 1981 apporte des réponses techniques et normatives pour les piscines de loisirs et les baignades aménagées, il exclut de son champ d’application les piscines thermales et piscines de réadaptation fonctionnelle d’usage exclusivement médical.

Pour ces dernières, les insuffisances réglementaires, bien que mises de côté soulignées, méritent de l’être à nouveau.
Le décret du 28 mars 1957 et sa circulaire d’application du 23 juillet 1957 interdisent tout traitement ; les eaux doivent être livrées telles qu’à l'émergence et conserver ainsi leurs valeurs thérapeutiques. Il semble qu’ici, le législateur ait davantage pensé aux eaux administrées qu’aux celles des piscines.
Par contre, le décret du 19 mai 1969 précise que l’utilisation des piscines et notamment le rythme de leurs évacuations, leur désinfection et leurs contrôles bactériologiques doivent faire l’objet d’un règlement strict donnant les garanties d’hygiène indispensables. Mais depuis aucun règlement n’est venu compléter ce texte qui, par ailleurs ne précise pas la nature de l’eau utilisée.

Si l’on s’en tient à la contrainte de préservation de la composition chimique qu’impose l’actuelle législation, l’élimination complète de la pollution bactérienne apportée par les baigneurs est impossible. Seul un abattement jusqu’à un

* Laboratoire Hydrologie et Hygiène, Faculté de Pharmacie, avenue Charles-Fleury, 34060 MONTPELLIER Cedex.
** Laboratoire Hydrologie et Hygiène, Faculté de Pharmacie, BP 38, 63001 CLERMONT-FERRAND Cedex.

Presse thermale et climatique, 1988, 125, n° 5.
seuil tolérable est envisageable et, pour assurer un tel abattement on ne peut que limiter la fréquentation de la piscine en fonction de ses caractéristiques ou renouveler plus ou moins l’eau.

Le seuil tolérable reste à définir en regard des risques sanitaires encourus. Mais le préalable à cette démarche est l’acquisition d’un nombre significatif de données de contamination avec des indicateurs spécifiques. Nous avons rassemblé ici quelques cas de figures.

CARACTÉRISTIQUES DES PISCINES ET BAINIOIRES CONTRÔLÉES RÉSULTATS

Piscines

8 bassins différents par la qualité de l’eau, par leur hydraulité et par leur fréquentation, répartis dans quatre établissements dont 3 thermaux et un de thalassothérapie ont fait l’objet de suivis bactériologiques.

Etablissement A

2 piscines en eau minérale chlorurée sodique :

— piscine 1 dite de mobilisation, fréquentée à un rythme de 9 baigneurs toutes les 30 minutes, soit 115 à 200 baigneurs/jour durant l’étude, remplie le matin, ouverte à 7 h 30, vidée après 18 h. Volume 35 m³, profondeur 1,2 m, température 37-39 °C, hydraulité inversée ;

— piscine 2, d’évolution libre, en moyenne 800 baigneurs/jour, volume 150 m³, profondeur 1,2 m, température 36-37 °C, hydraulité mixte.

Les déterminations ont porté sur les coliformes totaux et fécaux, les streptocoques fécaux et Pseudomonas aeruginosa (tableaux I et II).

Etablissement B

1 piscine de rééducation en eau de mer, fréquentée par 6 à 8 baigneurs par cycle de 30 minutes ; volume 28 m³, profondeur 1,2 m, eau recyclée en 1 h 30 avec filtration sur sable. Aux mêmes déterminations précédentes a été ajoutée celle des staphylococques (tableau III).

Etablissement C

4 piscines en eau chlorobicarbonatée :

— piscine 1 de mobilisation, volume 15 m³, profondeur 1,2 m, température 34 °C, 33 baigneurs durant les 5 heures de suivi ;

— piscine 2, identique mais température 32-34 °C et 26 baigneurs durant les 5 h de suivi ;

— piscine 3 ou bassin des incontinentes, volume 4 m³, température 34-38 °C, 5 baigneurs en 5 h de suivi, le dernier seul étant incontinent ;

— piscine 4, de marche, volume 45 m³, température 37 °C, 92 baigneurs en 5 h.

Les déterminations bactériologiques ont porté sur les coliformes totaux, Escherichia coli et Pseudomonas aeruginosa/ 100 ml et sur la numération totale à 37 °C/ml (tableaux IV et VI).

Etablissement D

1 piscine en eau carbogazeuse ferrugineuse d’un volume de 86 m³, profondeur 1,2 m, température 36-37 °C. Hydraulicié mixte classique. L’eau est recirculée à environ 30 m³/h sur un filtre à sable. Un apport quotidien d’eau neuve de 2 m³/h est effectué à partir d’un bac de disconnection. Durant l’étude, cet apport a été porté à 4 m³/h. La fréquentation a été de 81 baigneurs durant les 3 h 30 de l’essai : en moyenne 12 personnes peuvent être simultanément dans le bassin et leur séjour varie de 20 à 30 minutes (tableau VII).

Baignoires

Parallèlement, l’évaluation de l’apport bactérien par baigneur a été approchée de façon plus fine par le contrôle de 25 baignoires individuelles : 16 de 200 litres dans l’établissement A, 4 de même volume en B, 1 de 400 l en C et 4 de 250 l en D (tableaux VII et VIII). En C et D, il s’agissait d’hydroécluses c’est-à-dire de baignoires munies de diffuseurs sous pression assurant un nettoyage plus important de la peau.

TABLEAU I. — Suivi bactériologique journaliers — Piscine A.

<table>
<thead>
<tr>
<th>Jour de 1986 (N)</th>
<th>Bact./100 ml</th>
<th>7 h 30</th>
<th>8 h</th>
<th>10 h</th>
<th>12 h</th>
<th>14 h</th>
<th>16 h</th>
</tr>
</thead>
<tbody>
<tr>
<td>4 mars</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>matin</td>
<td>CT</td>
<td>0</td>
<td>17</td>
<td>68</td>
<td>129</td>
<td>354</td>
<td>460</td>
</tr>
<tr>
<td>CF</td>
<td>12</td>
<td>16</td>
<td>45</td>
<td>69</td>
<td>107</td>
<td>237</td>
<td></td>
</tr>
<tr>
<td>6 mars</td>
<td>SF</td>
<td>70</td>
<td>105</td>
<td>165</td>
<td>201</td>
<td>360</td>
<td>520</td>
</tr>
<tr>
<td>après-midi</td>
<td>PA</td>
<td>0</td>
<td>5</td>
<td>580</td>
<td>130</td>
<td>585</td>
<td>650</td>
</tr>
<tr>
<td>13 mars (120)</td>
<td>ST</td>
<td>0</td>
<td>20</td>
<td>50</td>
<td>120</td>
<td>600</td>
<td>1 000</td>
</tr>
<tr>
<td>CF</td>
<td>0</td>
<td>15</td>
<td>20</td>
<td>20</td>
<td>20</td>
<td>100</td>
<td></td>
</tr>
<tr>
<td>SF</td>
<td>0</td>
<td>30</td>
<td>55</td>
<td>100</td>
<td>100</td>
<td>80</td>
<td></td>
</tr>
<tr>
<td>PA</td>
<td>0</td>
<td>45</td>
<td>330</td>
<td>190</td>
<td>180</td>
<td>10</td>
<td></td>
</tr>
<tr>
<td>18 mars (115)</td>
<td>CT</td>
<td>0</td>
<td>7</td>
<td>83</td>
<td>84</td>
<td>313</td>
<td>248</td>
</tr>
<tr>
<td>SF</td>
<td>20</td>
<td>2</td>
<td>65</td>
<td>123</td>
<td>158</td>
<td>210</td>
<td></td>
</tr>
<tr>
<td>PA</td>
<td>0</td>
<td>13</td>
<td>31</td>
<td>413</td>
<td>245</td>
<td>880</td>
<td></td>
</tr>
<tr>
<td>26 mars (118)</td>
<td>CT</td>
<td>0</td>
<td>25</td>
<td>73</td>
<td>181</td>
<td>162</td>
<td>134</td>
</tr>
<tr>
<td>SF</td>
<td>18</td>
<td>21</td>
<td>50</td>
<td>64</td>
<td>145</td>
<td>402</td>
<td></td>
</tr>
<tr>
<td>PA</td>
<td>72</td>
<td>194</td>
<td>165</td>
<td>229</td>
<td>160</td>
<td>160</td>
<td></td>
</tr>
</tbody>
</table>

Coliformes totaux et fécaux = CT et CF. Streptocoques fécaux = SF et Pseudomonas aeruginosa = PA — N = Nombre cumulé de baigneurs entre l'ouverture de la piscine à 7 h 30 et l'humeur du dernier plongement.

TABLEAU II. — Suivi bactériologique journaliers — Piscine Az.

<table>
<thead>
<tr>
<th>Jour de 1986 (N)</th>
<th>Bact./100 ml</th>
<th>8 h</th>
<th>10 h</th>
<th>12 h</th>
<th>14 h</th>
<th>16 h</th>
<th>18 h</th>
</tr>
</thead>
<tbody>
<tr>
<td>31 juil. matin</td>
<td>CT</td>
<td>200</td>
<td>500</td>
<td>610</td>
<td>650</td>
<td>690</td>
<td>750</td>
</tr>
<tr>
<td>CF</td>
<td>115</td>
<td>440</td>
<td>530</td>
<td>300</td>
<td>630</td>
<td>700</td>
<td></td>
</tr>
<tr>
<td>7 août après-midi</td>
<td>SF</td>
<td>170</td>
<td>< 100</td>
<td>300</td>
<td>500</td>
<td>300</td>
<td>1 050</td>
</tr>
<tr>
<td>PA</td>
<td>< 100</td>
<td>< 100</td>
<td>< 120</td>
<td>100</td>
<td>100</td>
<td>100</td>
<td></td>
</tr>
<tr>
<td>20 août (800)</td>
<td>SF</td>
<td>400</td>
<td>350</td>
<td>650</td>
<td>660</td>
<td>770</td>
<td>750</td>
</tr>
<tr>
<td>CF</td>
<td>50</td>
<td>530</td>
<td>650</td>
<td>660</td>
<td>800</td>
<td>700</td>
<td>700</td>
</tr>
<tr>
<td>SF</td>
<td>380</td>
<td>960</td>
<td>800</td>
<td>700</td>
<td>800</td>
<td>850</td>
<td></td>
</tr>
<tr>
<td>PA</td>
<td>100</td>
<td>80</td>
<td>70</td>
<td>60</td>
<td>250</td>
<td>60</td>
<td></td>
</tr>
<tr>
<td>27 août (800)</td>
<td>CT</td>
<td>120</td>
<td>560</td>
<td>650</td>
<td>540</td>
<td>1 000</td>
<td>1 000</td>
</tr>
<tr>
<td>SF</td>
<td>180</td>
<td>340</td>
<td>500</td>
<td>660</td>
<td>800</td>
<td>800</td>
<td>800</td>
</tr>
<tr>
<td>PA</td>
<td>260</td>
<td>430</td>
<td>230</td>
<td>550</td>
<td>450</td>
<td>450</td>
<td>640</td>
</tr>
</tbody>
</table>

Coliformes totaux et fécaux = CT et CF. Streptocoques fécaux = SF et Pseudomonas aeruginosa = PA — N = Nombre cumulé de baigneurs entre l'ouverture de la piscine à 7 h et l'humeur du dernier plongement.

Presse thermale et climatique, 1988, 125, no 5.
TABLEAU III. — Evolution de la contamination bactérienne dans un bassin de réduction de 28 m³. Eaux recyclées avec filtration entre 8 h et 18 h.

<table>
<thead>
<tr>
<th>Heure</th>
<th>Nombre de baigneurs dans les 30 minutes avant</th>
<th>Coliformes totaux</th>
<th>Coliformes fécaux</th>
<th>Streptocoques fécaux</th>
<th>Staphylocoques</th>
<th>Dans 250 ml Pseudomonas aeruginosa</th>
</tr>
</thead>
<tbody>
<tr>
<td>t₀ = 8 h</td>
<td>0 Rempliss.</td>
<td>19</td>
<td>15</td>
<td>4</td>
<td>0</td>
<td>35</td>
</tr>
<tr>
<td>t₁ = 8 h 30</td>
<td>6</td>
<td>58</td>
<td>33</td>
<td>18</td>
<td>0</td>
<td>65</td>
</tr>
<tr>
<td>t₂ = 9 h</td>
<td>6</td>
<td>82</td>
<td>51</td>
<td>6</td>
<td>0</td>
<td>95</td>
</tr>
<tr>
<td>t₃ = 9 h 30</td>
<td>0</td>
<td>—</td>
<td>—</td>
<td>—</td>
<td>—</td>
<td>—</td>
</tr>
<tr>
<td>t₄ = 10 h</td>
<td>7</td>
<td>205</td>
<td>54</td>
<td>6</td>
<td>0</td>
<td>40</td>
</tr>
<tr>
<td>t₅ = 10 h 30</td>
<td>7</td>
<td>250</td>
<td>68</td>
<td>164</td>
<td>0</td>
<td>55</td>
</tr>
<tr>
<td>t₆ = 11 h</td>
<td>6</td>
<td>65</td>
<td>62</td>
<td>96</td>
<td>0</td>
<td>155</td>
</tr>
<tr>
<td>t₇ = 11 h 30</td>
<td>8</td>
<td>95</td>
<td>54</td>
<td>95</td>
<td>0</td>
<td>35</td>
</tr>
<tr>
<td>t₈ = 12 h</td>
<td>8</td>
<td>245</td>
<td>81</td>
<td>104</td>
<td>0</td>
<td>305</td>
</tr>
<tr>
<td>t₉ = 14 h</td>
<td>0</td>
<td>125</td>
<td>21</td>
<td>28</td>
<td>0</td>
<td>30</td>
</tr>
<tr>
<td>t₁₀ = 14 h 30</td>
<td>6</td>
<td>225</td>
<td>17</td>
<td>16</td>
<td>0</td>
<td>40</td>
</tr>
<tr>
<td>t₁₁ = 15 h</td>
<td>7</td>
<td>235</td>
<td>33</td>
<td>72</td>
<td>0</td>
<td>25</td>
</tr>
<tr>
<td>t₁₂ = 15 h 30</td>
<td>7</td>
<td>165</td>
<td>15</td>
<td>68</td>
<td>0</td>
<td>75</td>
</tr>
<tr>
<td>t₁₃ = 16 h</td>
<td>7</td>
<td>205</td>
<td>29</td>
<td>64</td>
<td>0</td>
<td>25</td>
</tr>
<tr>
<td>t₁₄ = 16 h 30</td>
<td>7</td>
<td>165</td>
<td>31</td>
<td>102</td>
<td>0</td>
<td>65</td>
</tr>
<tr>
<td>t₁₅ = 18 h</td>
<td>6</td>
<td>165</td>
<td>30</td>
<td>66</td>
<td>0</td>
<td>40</td>
</tr>
</tbody>
</table>

TABLEAU IV. — Etablissement C. Suivi bactériologique des piscines.

<table>
<thead>
<tr>
<th>Heure</th>
<th>Point</th>
<th>CT/100 ml</th>
<th>E. Coli/100 ml</th>
<th>Num. tot./1 ml.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Piscine C₁</td>
<td>6 h</td>
<td>A₀</td>
<td>100</td>
<td>0</td>
</tr>
<tr>
<td></td>
<td></td>
<td>B₀</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>11 h</td>
<td>A₀</td>
<td>100</td>
<td>10</td>
<td>7,10³</td>
</tr>
<tr>
<td></td>
<td>B₀</td>
<td>1500</td>
<td>20</td>
<td>1,10³</td>
</tr>
</tbody>
</table>

Piscine C₂	6 h	A₀	0	0	3,5.10³
	B₀	0	2	4,8.10³	
	C₀	0	0	4,10³	
7 h 30	A₁	120	20	5,9.10³	
	B₁	220	60	4,3.10²	
	C₁	180	10	8,5.10³	
9 h 30	A₀	600	50	2,7.10³	
	B₀	150	110	3,10³	
	C₀	200	110	2,10³	
11 h	A₀	800	70	2,8.10³	
	B₀	1000	60	3,5.10³	
	C₀	1500	90	2,5.10³	

Piscine C₃	6 h	A₀	0	0	7,10³
	B₀	0	0	4,5.10³	
7 h 30	A₁	10	10	8,10³	
	B₁	10	10	4,5.10³	
9 h 30	A₀	70	10	2,10³	
	B₀	100	10	6,4.10³	
11 h	A₀	500	15	1,2.10³	
	B₀	500	15	1,4.10³	

La présence de bactérie pyocyanea est mise en évidence dès 6 h. À partir de 11 h, le nombre trop important de ces germes rend la lecture impossible sur 100 ml.

TABLEAU V. — Etablissement C - Piscine C₁.

<table>
<thead>
<tr>
<th>Heure</th>
<th>Point</th>
<th>CT/100 ml</th>
<th>E. Coli/100 ml</th>
<th>Num. tot./1 ml.</th>
</tr>
</thead>
<tbody>
<tr>
<td>6 h</td>
<td>A₀</td>
<td>0</td>
<td>0</td>
<td>1,5.10³</td>
</tr>
<tr>
<td></td>
<td>B₀</td>
<td>0</td>
<td>0</td>
<td>1,3.10³</td>
</tr>
<tr>
<td></td>
<td>C₀</td>
<td>0</td>
<td>0</td>
<td>2,7,10³</td>
</tr>
<tr>
<td>7 h 30</td>
<td>A₁</td>
<td>260</td>
<td>160</td>
<td>1,6.10⁵</td>
</tr>
<tr>
<td></td>
<td>B₁</td>
<td>70</td>
<td>30</td>
<td>2,10³</td>
</tr>
<tr>
<td></td>
<td>C₁</td>
<td>80</td>
<td>50</td>
<td>5,4.10³</td>
</tr>
<tr>
<td>9 h 30</td>
<td>A₀</td>
<td>1500</td>
<td>320</td>
<td>2,8.10⁵</td>
</tr>
<tr>
<td></td>
<td>B₀</td>
<td>200</td>
<td>530</td>
<td>4,6.10⁵</td>
</tr>
<tr>
<td>10 h 30</td>
<td>A₀</td>
<td>2000</td>
<td>150</td>
<td>7,10³</td>
</tr>
<tr>
<td></td>
<td>B₀</td>
<td>1500</td>
<td>320</td>
<td>5,5.10³</td>
</tr>
<tr>
<td></td>
<td>C₀</td>
<td>200</td>
<td>400</td>
<td>7,10³</td>
</tr>
<tr>
<td>11 h</td>
<td>A₀</td>
<td>5400</td>
<td>360</td>
<td>2,5.10⁴</td>
</tr>
<tr>
<td></td>
<td>B₀</td>
<td>1300</td>
<td>250</td>
<td>6,3.10⁴</td>
</tr>
<tr>
<td></td>
<td>C₀</td>
<td>1000</td>
<td>200</td>
<td>12,10³</td>
</tr>
</tbody>
</table>

La présence de Pseudomonas aeruginosa sur les échantillons des 6 heures est à noter.

TABLEAU VI. — Suivi bactériologique - Etablissement D.

<table>
<thead>
<tr>
<th>Bact./100 ml</th>
<th>15 personnes présentes - 0,66 m³ renouvelés</th>
</tr>
</thead>
<tbody>
<tr>
<td>CT</td>
<td>SF</td>
</tr>
<tr>
<td>8 h 05</td>
<td>A₀</td>
</tr>
<tr>
<td>A₀⁺</td>
<td>80</td>
</tr>
</tbody>
</table>

60 baigneurs cumulés - 3,83 m³ d'eau renouvelés

| 9 h 05 | A₀ > 3,10³ | 0 | > 300 |
| A₀⁺ > 3,10³ | 0 | > 300 |

91 baigneurs cumulés - 7,83 m³ d'eau renouvelés

| 10 h 05 | A₀ > 3,10³ | 780 | > 300 |
| A₀⁺ > 3,10³ | 130 | > 300 |

Dans le dernier établissement les baigneurs n'étaient ni douchés ni savonnés avant le bain. Par contre, en A ils avaient déjà subi des soins thermaux, dont une application de boues, suivie d'une douche au jet énergétique.

Pressue thermale et climatique, 1988, 125, n° 5.
TABLEAU VII. — Contrôles bacteriologiques de baignoires individuelles.
Etablissement A (quantité totale de germes par baignoire).

<table>
<thead>
<tr>
<th>Baignoires no</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
<th>6</th>
<th>7</th>
<th>8</th>
</tr>
</thead>
<tbody>
<tr>
<td>CT</td>
<td>av</td>
<td>3,2.10³</td>
<td>3,6.10⁴</td>
<td>1,6.10⁴</td>
<td>6.10⁴</td>
<td>2,10⁴</td>
<td>8,10⁴</td>
<td>4,10⁴</td>
</tr>
<tr>
<td></td>
<td>ap</td>
<td>5,6.10⁴</td>
<td>2,10⁴</td>
<td>6.10⁴</td>
<td>6.10⁴</td>
<td>1,7.10⁴</td>
<td>2,4.10⁴</td>
<td>1,10⁴</td>
</tr>
<tr>
<td>CF</td>
<td>av</td>
<td>4,10⁴</td>
<td>0</td>
<td>1,6.10⁴</td>
<td>6.10⁴</td>
<td>0</td>
<td>0</td>
<td>8,10³</td>
</tr>
<tr>
<td></td>
<td>ap</td>
<td>2,4.10⁴</td>
<td>4,10⁴</td>
<td>5,6.10⁴</td>
<td>6.10⁴</td>
<td>8,10⁴</td>
<td>1,6.10⁴</td>
<td>1,10⁴</td>
</tr>
<tr>
<td>SF</td>
<td>av</td>
<td>1,5.10⁴</td>
<td>1,2.10⁴</td>
<td>2,5.10⁴</td>
<td>7,2.10⁴</td>
<td>1,6.10⁴</td>
<td>2,4.10⁴</td>
<td>1,10⁴</td>
</tr>
<tr>
<td></td>
<td>ap</td>
<td>8,4.10⁴</td>
<td>5,10⁴</td>
<td>5,10⁴</td>
<td>8.10⁴</td>
<td>0</td>
<td>0</td>
<td>4,10³</td>
</tr>
<tr>
<td>PA</td>
<td>av</td>
<td>2,1.10⁴</td>
<td>0</td>
<td>1,10⁴</td>
<td>6.10⁴</td>
<td>4,10³</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td></td>
<td>ap</td>
<td>4,1.10⁴</td>
<td>0</td>
<td>0,10⁴</td>
<td>8.10⁴</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Baignoires no</th>
<th>9</th>
<th>10</th>
<th>11</th>
<th>12</th>
<th>13</th>
<th>14</th>
<th>15</th>
<th>16</th>
</tr>
</thead>
<tbody>
<tr>
<td>CT</td>
<td>av</td>
<td>2.10⁴</td>
<td>0</td>
<td>8,10⁴</td>
<td>4,10⁴</td>
<td>0</td>
<td>6.10⁴</td>
<td>0</td>
</tr>
<tr>
<td></td>
<td>ap</td>
<td>1,8.10⁴</td>
<td>3,10⁴</td>
<td>8</td>
<td>4,10⁴</td>
<td>4,10⁴</td>
<td>8,10³</td>
<td>6,10⁴</td>
</tr>
<tr>
<td>CF</td>
<td>av</td>
<td>4,10⁴</td>
<td>0</td>
<td>4,10⁴</td>
<td>4,10⁴</td>
<td>0</td>
<td>0</td>
<td>4,10³</td>
</tr>
<tr>
<td></td>
<td>ap</td>
<td>1,1.2.10⁴</td>
<td>2,10⁴</td>
<td>8</td>
<td>8,10⁴</td>
<td>4,10⁴</td>
<td>0</td>
<td>3,8.10³</td>
</tr>
<tr>
<td>SF</td>
<td>av</td>
<td>4,10³</td>
<td>4,10³</td>
<td>2,8.10⁴</td>
<td>1,2.10⁴</td>
<td>0</td>
<td>0</td>
<td>4,10³</td>
</tr>
<tr>
<td></td>
<td>ap</td>
<td>1,2.1.10⁴</td>
<td>2,5.10⁴</td>
<td>5,2.10⁴</td>
<td>1,2.10⁴</td>
<td>5,10⁴</td>
<td>6,4.10⁴</td>
<td>8,10³</td>
</tr>
<tr>
<td>PA</td>
<td>av</td>
<td>4,1.10⁴</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>4,10³</td>
<td>8,10³</td>
</tr>
<tr>
<td></td>
<td>ap</td>
<td>0</td>
<td>8.10³</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
</tbody>
</table>

TABLEAU VIII. — Contrôles bacteriologiques de baignoires individuelles.
Etablissements B et D (quantité totale de germes par baignoire).

<table>
<thead>
<tr>
<th>Baignoires no</th>
<th>CT</th>
<th>CF</th>
<th>SF</th>
<th>Steph.</th>
<th>P.A.</th>
</tr>
</thead>
<tbody>
<tr>
<td>B 1</td>
<td>av</td>
<td>6.10³</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td></td>
<td>ap</td>
<td>3,6.10⁴</td>
<td>6,10⁴</td>
<td>4,10³</td>
<td>0</td>
</tr>
<tr>
<td>B 2</td>
<td>av</td>
<td>4,10³</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td></td>
<td>ap</td>
<td>1,3.10⁴</td>
<td>5,10⁴</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>B 3</td>
<td>av</td>
<td>1,2.10⁴</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td></td>
<td>ap</td>
<td>1,6.10⁴</td>
<td>1,8.10⁴</td>
<td>1,2.10⁴</td>
<td>0</td>
</tr>
<tr>
<td>B 4</td>
<td>av</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td></td>
<td>ap</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>D 1</td>
<td>av</td>
<td>0</td>
<td>—</td>
<td>2,5.10⁴</td>
<td>3,10⁴</td>
</tr>
<tr>
<td></td>
<td>ap</td>
<td>7,5.10⁴</td>
<td>—</td>
<td>3,8.10³</td>
<td>7,5,10³</td>
</tr>
<tr>
<td>D 2</td>
<td>av</td>
<td>7,5.10⁴</td>
<td>—</td>
<td>7,5,10³</td>
<td>5,10³</td>
</tr>
<tr>
<td></td>
<td>ap</td>
<td>7,5.10⁴</td>
<td>—</td>
<td>5,10³</td>
<td>1,7,10³</td>
</tr>
<tr>
<td>D 3</td>
<td>av</td>
<td>1,5.10⁴</td>
<td>—</td>
<td>1,10³</td>
<td>5,10³</td>
</tr>
<tr>
<td></td>
<td>ap</td>
<td>7,5.10⁴</td>
<td>—</td>
<td>7,5,10³</td>
<td>7,5,10³</td>
</tr>
<tr>
<td>D 4</td>
<td>av</td>
<td>4,10³</td>
<td>—</td>
<td>7,10³</td>
<td>7,5,10³</td>
</tr>
<tr>
<td></td>
<td>ap</td>
<td>7,5,10³</td>
<td>—</td>
<td>7,5,10³</td>
<td>7,5,10³</td>
</tr>
</tbody>
</table>

av : avant ; ap : après.

DISCUSSION

Il est évident que l’apport bactérien individuel varie d’une personne à l’autre. Pour un même baigneur, il est vraisemblable qu’il y ait différence d’un jour à l’autre.

Le niveau d’hygiène corporelle du baigneur au moment du bain conditionne fortement sa participation à la contamination de l’eau. Selon qu’il y a eu douche préalable ou non les résultats diffèrent mais encore tout dépend de la douche : après une douche furtive ou une douche au jet telle qu’elle est donnée après une application de boue pour enlever la pellicule adhérant à la peau, il y a un apport de 10⁴ ou de 10³ coliformes. L’importance du « décapsulation » ressort dans les valeurs obtenues avec les hydroxyles.

L’apport pour une personne incontinent peut être considéré comme un maximum avec les ordres de grandeur suivants :

Germes totaux 10⁹ ; Coliformes 10⁷ ; Coliformes fécaux 10⁶

Une personne non douchée ou douchée furtivement contribue pour :

Germes totaux 10¹⁰ ; Coliformes 10⁶

Coliformes et Streptocoques fécaux 10⁵

Une douche savonnée efficace conduit à un abatement d’une puissance 10.

Ces données en baignoire individuelle peuvent aider à comprendre la contamination des piscines, mais leur multiplication par le nombre de baigneurs ne recoupe pas toujours la réalité. Les aménagements de la piscine et de ses abords, son hydraulique, sa fréquentation en rapport avec les caractéristiques, la place du traitement en piscine dans la chronologie des soins, font de chacune d’elles un cas d’espèce. On peut néanmoins définir quelques lignes générales.

Presses thermales et climatiques, 1988, 125, no 5.
La moyenne de fréquentation simultanée d'une piscine de
rééducation se situe autour de 10 baigneurs par tranche de
20 à 30 minutes pour un volume disponible de 3 à 4 m³ par
baigneur. Il ne peut être envisagé des temps de séjour de
l'eau dans le bassin supérieur à 24 h sans renouvellement.
Le renouvellement de l'eau pour diluer le nombre de bacté-
ries conduit à des volumes de l'ordre de 1 m³/baigneur si
l'on retient une valeur arbitraire de 10² coliformes pour
100 ml. Rares sont les établissements qui disposent de tels
débits. La filtration sur sable, fréquemment installée, est
parfaitement inutile sur le plan bactériologique, au moins
dans les eaux ne floculant pas naturellement.

Il n'existe actuellement aucune donnée concernant les
risques sanitaires encourus dans les piscines thermales selon
leur niveau de contamination microbienne. L'évaluation de
ces niveaux est habituellement faite au travers des classi-
ges germs de contamination fécale. Sont-ils les meilleurs
indicateurs sanitaires dans ce contexte ?

Quelle signification faut-il donner à des examens mycolo-
giq ues ou à la présence de Pseudomonas aeruginosa ?

Ir régulièrement présents et en général peu nombreux au
niveau individuel (cf baignoires) ils se multiplient à l'intérieur
des établissements dans des ambiances favorables et sem-
blent être une constante non négligeable des piscines. Ils
apparaissent peut-être davantage comme un indicateur de
l'hygiène de l'ensemble de l'établissement et de l'environ-
nement de la piscine que de la propreté individuelle du cu-
riste, lequel en est néanmoins le véhicule. Il apparaît donc
difficile de sélectionner des indicateurs microbiologiques et
de faire des choix de niveaux guides pour l'élaboration d'une
réglementation sanitaire.

L'hygiéniste se trouve devant une difficile alternative : la
réglementation lui interdit tout traitement de désinfection
qui entraîne l'altération des caractéristiques physico-chimiques
de l'eau. Il y a par contre altération de la qualité bactério-
logique dont il n'est pas parfaitement à même d'évaluer le
risque sanitaire.

Mais peut-on laisser encourir aux curistes des risques mi-
crobiens même mal définis ?

Le recours à la classique désinfection par chloration assure
une qualité hygiénique de l'eau mais est-ce sans contre partie
sanitaire chimique ? Les méthodes physiques tels les UV,
malgré leur non rémanence, peuvent-ils être un compromis ?

REFERENCES

1. Besançon F. — Rapport du Comité Professionnel sur l'hygiène
des piscines de mobilisation dans les stations thermales. Décem-
bre 1983.
2. Pépin D., Tuyeras C., Alame J. — Problèmes posés par l'uti-
lisation d'une eau carbogazeuse ferrugineuse en piscine ther-
— Les piscines de thalassothérapie ; contraintes liées à leurs
4. Schlosser C. — Essai de décontamination bactérienne de 2
piscines thermales par rayonnement U.V. — DEA Hydrologie —
5. Tuyeras C. — Pratique de la rééducation en piscine ther-
male. Problème d'hygiène posés par le traitement des eaux.

Techniques d'étude de la contamination
et de la décontamination des surfaces
 dans une installation thermale

J.L. PAQUIN *, X. BONNEFOY **

(Vandœuvre-les-Nancy, Epsilon)

Les microorganismes présents sur les surfaces dans les
piscines sont responsables d'un risque potentiel d'infection
chez les baigneurs soit par voie indirecte par l'intermédiaire
de l'eau dont la contamination est en grande partie due à
ces germes, soit par voie directe, par contact cutané.

Ce risque infectieux est d'autant plus important dans les
piscines thermales où l'eau ne pouvant contenir de désin-
fectant voit son niveau de contamination augmenter lorsque
les surfaces sont chargées en microorganismes. D'autre part
les personnes fréquentant ces établissements sont sou-
vent des malades affaiblis, parfois même infectés et donc
plus sensibles à l'infection que d'autres.

Les principaux microorganismes en cause sont des bacté-
reries, des virus ou des champignons responsables d'infections
cutanées diverses (mycoses, verrues...).

L'entretien et la désinfection des surfaces sont donc des
problèmes importants dans le fonctionnement d'une installa-
tion thermale et nous nous sommes intéressés dans ce travail
aux techniques permettant d'explorer correctement les ni-

* Laboratoire d'Hygiène et de Recherche en Santé Publique,
Faculté de Médecine, B.P. 184, 54506 VANDEOEUVRE-LES-NANCY.
** Direction Départementale des Affaires Sanitaires et Sociales,
17-19, rue A. Hurault, 88000 EPINAL.

Presse thermale et climatique, 1988, 125, n° 6.
veaux de contamination des surfaces et l’efficacité d’une désinfection.

TECHNIQUES DE PRÉLÈVEMENT

Il existe des techniques normalisées pour le contrôle de la qualité microbiologique des eaux, par contre les techniques permettant d’explorer quantitativement la contamination des surfaces sont loin d’être codifiées et chaque laboratoire de contrôle utilise des procédés qui lui sont propres et interdisent toute comparaison, voire souvent même toute interprétation des résultats.

Nous avons choisi d’étudier parmi les nombreuses techniques existantes, 2 procédés facilement standardisables :

— empreinte directe d’un milieu gelé (boîte Rodac) ;
— méthode par lavage (pistolet laveur).

Un essai comparatif a été réalisé en laboratoire et sur le terrain pour évaluer les performances de ces deux techniques.

Aucune méthode de prélèvement ne permet de décrocher en une seule opération tous les microorganismes présents sur une surface. Elles se caractérisent toutes par un certain rendement. Pour permettre le dénombrement de microorganismes, les techniques doivent avoir un rendement constant, c’est à dire permettre, pour un type de surface donné, de décrocher toujours le même pourcentage de germes, ceci permettant entre autre, de réaliser des comparaisons dans le temps.

Pour montrer qu’une technique possède un rendement constant, nous avons réalisé des séries de plusieurs prélèvements sur un même emplacement.

Si le rendement est constant, le nombre de microorganismes récupérés à chaque prélèvement décroît suivant une relation de type :

\[y = ab^x \]

\(y \) = nombre de germes, \(x \) = numéro du prélèvement

eu encore, s’il on transforme \(y \) en log:

\[\log y = \log a + x \log b \]

Les résultats montrent que :

— sur surface sèche : les deux méthodes ont des rendements constants ;
— sur surface humide : seule la méthode par lavage possède un rendement constant ;
— sur surface très contaminée : les boîtes Rodac ne permettent pas d’effectuer de dénombrement en raison d’une confluence des colonies sur gelée ;
— sur surfaces irrégulières : les deux techniques posent des problèmes et donnent des résultats inconstants.

DÉCONTAMINATION DES SURFACES

ESSAIS SUR LE TERRAIN

Nous avons réalisé dans un établissement thermal, 6 prélèvements autour des bassins et dans les vestiaires, avant et après application des différents détergents-désinfectants choisis parmi les 4 principales familles chimiques d’antibactériens :

— produit A : biguanide ;
— produit B : dérivé aldehydique ;
— produit C : dérivé phénolique ;
— produit D : ammonium quaternaire ;
— produit E : mélange d’ammonium quaternaire.

C’est la technique par lavage qui a été retenue. Seules les bactéries ont été dénombrées.

Les mêmes prélèvements ont été réalisés avant et après un simple lavage à l’eau.

Contamination de la piscine avant désinfection

L’importance de la contamination est variable en fonction du lieu de prélèvement. D’une façon générale, on retrouve plus de microorganismes par cm² dans les toilettes et avant les pédiluviums qu’au tour du bassin.

Le nombre moyen de microorganismes varie entre 10 000 et 500 000 germes/5 cm² en fonction des semaines.

Les bactéries les plus fréquemment isolées appartiennent aux genres *Pseudomonas* (*Ps. fluorescens*), *Xanthomonas*, *Flavobacterium*, *Bacillus* et *Micrococcus*.

Efficacité des différents nettoyants-désinfectants

Pour chaque produit, nous avons comparé la contamination moyenne du sol (moyenne géométrique de 6 prélèvements) avant et après désinfection, par un test t.

Les résultats sont consignés dans le tableau 1.

<table>
<thead>
<tr>
<th>TABLEAU I.</th>
</tr>
</thead>
</table>

<table>
<thead>
<tr>
<th>Nombre de bactéries/cm² (en log)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
</tr>
<tr>
<td>Prod. A</td>
</tr>
<tr>
<td>Prod. B</td>
</tr>
<tr>
<td>Prod. C</td>
</tr>
<tr>
<td>Prod. D</td>
</tr>
<tr>
<td>Prod. E</td>
</tr>
<tr>
<td>Eau</td>
</tr>
</tbody>
</table>

Il n’y a que pour les produits A et E que nous avons mis en évidence un abattement significatif du nombre de bactéries, toutefois relativement faible, le produit B les suivant de très près. L’eau seule, par contre, entraîne une augmentation de la contamination.

Il est à signaler que nous ne sommes pas du tout intervenus sur la technique de nettoyage qui était celle utilisée classiquement par le personnel d’entretien de l’établissement ce qui permet peut-être en partie d’expliquer les mauvais résultats obtenus. En effet, l’utilisation de l’eau comme seul agent nettoyant nous a montré l’importance du type de matériel utilisé pour le nettoyage et la nécessité de son entretien régulier.

Prasse thermale et climatique, 1988, 125, n° 5.
CONCLUSION

Ce travail nous a permis de mettre en évidence plusieurs points :

— les techniques de prélèvement de surface, si l'on veut faire des dénombrements, ne présentent pas toutes les mêmes performances et doivent être choisies en fonction du type de revêtement que l'on veut étudier ;

— les produits nettoyant-désinfectants ne semblent pas tous identiques et là encore les performances sont variables en fonction du type de molécule ;

— enfin, les techniques de nettoyage utilisées et surtout l'entretien du matériel de nettoyage semblent aussi importants que le choix d'un bon désinfectant.

Hygiène de l'atmosphère dans les établissements thermaux

D. PEPIN *, A. RAMBAUD **, C. CHADES *

(Clermont-Ferrand, Montpellier)

Les établissements thermaux offrent en matière d'hygiène des particularités liées à la fois à la qualité et à l'affluence des populations qui les fréquentent.

Les stations thermales doivent, sous l'angle épidémiologique, être considérées comme des lieux de rassemblement de porteurs présentant les caractéristiques suivantes :

— ils sont atteints d'affection dont le siège est identique ;

— ils véhiculent des germes qui risquent de présenter une résistance aux antibiotiques, classiquement utilisés dans le type d'affection qu'ils soignent à la station ;

— ils font souvent l'objet de traitements qui diminuent leur résistance à l'infection.

Les établissements thermaux doivent, sous l'angle sanitaire, être considérés comme des hybrides d'établissement de soins et d'établissement recevant du public. En effet, les risques de surinfection y sont considérablement plus faibles qu'à l'hôpital, mais les risques épidémiologiques y sont beaucoup plus importants que dans les lieux recevant du public. Les problèmes d'hygiène qui y sont soulevés sont, en résumé, essentiellement liés à l'importance des flux de populations particulièrement vulnérables et réceptives aux infections.

Dans les stations où nous avons effectué l'étude de l'hygiène des atmosphères des établissements thermaux, l'attention des médecins prescripteurs et des responsables des soins est périodiquement attirée par des épisodes d'affections respiratoires le plus souvent bénignes, revêtant une allure épidémiqure.

Les problèmes soulevés par la transmission aéroportée dans les établissements thermaux relèvent aussi bien de la salubrité des locaux que des précautions d'hygiène qui sont prises au niveau des soins. Dans les divers établissements qui ont fait l'objet de notre étude, on distingue deux types de soins selon que le médicament thermal est administré individuellement ou collectivement comme c'est le cas dans les salles d'inhalation où les curistes séjour- nent dans un brouillard préparé par dispersion de l'eau thermale. Dans le but de proposer des solutions à la contamination des atmosphères soit pour améliorer la situation sanitaire d'établissements existant déjà, soit pour projeter la configuration optimale d'établissements futurs ; de donner des recommandations concernant les précautions à prendre dans l'administration des soins pour optimiser leur qualité sanitaire ; nous avons dans un premier temps analysé qualitativement la biocontamination bactérienne pour apprécier le danger, et dans un deuxième temps, recherché une méthode d'évaluation, sinon du danger d'infection du moins du risque épidémiologique.

PRÉLÈVEMENTS

Pour définir les points de prélèvements, nous avons distingué 3 types de locaux dont la qualité de l'air peut être marquée par la circulation ou par le stationnement des populations, à savoir :

— les voies de circulation : couloirs et halls ;

— les salles de soins : dans ces pièces où sont installés les appareils de traitement individuels, les curistes circulent et stationnent, mais l'affluence est régulée et limitée par le nombre d'appareils ;

— les salles de traitement collectifs : les salles dans lesquelles le nombre de personnes admises est limité, comportant deux types d'atmosphères traitantes, à savoir les atmo-
sphères chargées d’un brouillard sec et peu important et les atmosphères chargées de brouillard humide.

La sélection des points de prélèvements a été motivée à la fois par l’importance des flux de population et par la disposition des lieux plus ou moins favorable à la circulation et au renouvellement de l’air.

D’une façon générale, les prélèvements ont été effectués à 1,20 m du sol.

Pour les prélèvements d’air sec, nous avons utilisé l’impecteur à fente type MK2, qui permet de prélever directement sur le milieu de culte coulé en boîte de pétri.

L’atmosphère saturée en humidité des salles de brouillard ne se prêtant pas à l’utilisation de ce type d’appareil, les prélèvements ont, dans ces cas, été effectués par lavage de l’air dans un barboteur à impact. La solution de lavage de l’air recueillie dans les barboteurs a été conservée à + 4 °C, puis dirigée immédiatement au laboratoire pour être ensemencée dans les 4 à 5 heures suivant le prélèvement.

MÉTHODES D’ANALYSE

Les méthodes d’analyse et les milieux de culture ont été choisis dans le but de couvrir le mieux possible les diverses catégories de microorganismes généralement isolés de l’air. Parmi les microorganismes de l’air, on distingue 3 catégories de bactéries dont la signification sanitaire est différente :

— les microorganismes de l’environnement ;
— la flore provenant de l’homme : elle peut être d’origine fécale (entérobactéries, streptocoques fécaux), d’origine rhinopharyngée, ou cutanée (staphylocoques, streptocoques) ;
— les pathogènes et les opportunistes qui peuvent être considérés comme dangereux, et sont issus des deux catégories précédentes.

Les milieux suivants ont été utilisés :

— milieu de Drigalski pour les entérobactéries et les bactéries gram négatif ;
— milieu de Chapman pour les staphylocoques ;
— milieu à la gélose au sang additionné d’acide nalidixique pour la culture des streptocoques en présence de CO2 ;
— milieu de Sabouraud additionné de chloramphénicol pour les levures, les moisissures et les champignons filamentés ;
— gélose Trypticase-soja pour les numérations totales des germes.

ANALYSE DES RÉSULTATS

Étude de la flore

Au cours d’une première campagne, nous avons procédé à l’inventaire des microorganismes retrouvés dans les atmosphères. Nous avons mis en évidence un certain nombre de microorganismes classiquement décrits dans la flore de l’air : Bacillus, Acinetobacter, Serratia, Scopulariopsis, Paecilomyces, levures ainsi que des bactéries qui peuvent être considérées comme ayant une origine humaine.

Dans un certain nombre d’échantillons, nous avons noté la présence de Staphylococcus aureus, de Pseudomonas aeru-ginosa et occasionnellement de Klebsiella ozaenae, bactéries qui sont pathogènes ou potentiellement pathogènes, et celle d’Aspergillus fumigatus, champignon classé parmi les opportunistes.

On peut donc considérer que, sans être tout à fait exceptionnelle, la présence de microorganismes pathogènes ou opportunistes est rare, eu égard au nombre de prélèvements positifs par rapport au nombre total de prélèvements. Dans ce contexte, si la présence de ces microorganismes est inquiétante, leur absence n’est pas pour autant rassurante, et le problème d’indicateur de risque se pose. Il est séduisant et tentant d’essayer de rapprocher le nombre de bactéries préssumées staphylocoques, cultivant sur le milieu de Chapman, de la présence de germes pathogènes et de l’affluence.

Sur l’ensemble des échantillons prélevés, nous n’avons malheureusement pu vérifier de relations. Il nous paraît important de souligner qu’au contraire, le nombre de bactéries cultivant sur milieu de Chapman était d’autant plus faible que le nombre de bactéries cultivant sur gélose nutritive à 37 °C ou à 22 °C était plus élevé.

Ce phénomène signalé par d’autres auteurs ne peut s’expliquer autrement que par l’inhibition du développement des bactéries recherchées en présence d’un développement important de bactéries de l’environnement. Nous retiendrons donc, que compte tenu des méthodes d’investigations qui nécessitent la mise en œuvre d’une culture, l’utilisation de ce type d’indicateur s’avère impossible.

L’appréciation des populations bactériennes saprophytes cultivant sur gélose nutritive que nous avons conduite parallèlement à celle des bactéries pathogènes, nous a, en revanche, semblé pouvoir être retenue comme indicateur. Leur détermination est relativement rapide et se prête d’autant mieux à la multiplication des échantillons que la lecture des boîtes est automatisable.

Étude quantitative de la biocontamination

Lors d’une deuxième campagne de mesures, nous avons donc procédé à la numération totale des bactéries sur gélose nutritive. On peut considérer que l’air n’est pas un milieu de prolifération, mais de propagation ; les bactéries que l’on y trouve proviennent d’une part de la remise en suspension des poussières des murs et des sols lors de mouvements d’air, et d’autre part des bactéries apportées par l’homme. Les premières, témoins de l’état de propreté et des mouvements de l’air sont des bactéries de l’environnement, la culture en gélose nutritive à 22 °C recouvre cette catégorie de germes. Les deuxièmes, témoins d’affluence, se révèlent mieux par culture à 37 °C et peuvent constituer des indicateurs de risque.

Nous avons donc soumis à la numération totale des bactéries cultivant à 37 °C et à 22 °C des échantillons prélevés à la cadence de 1 examen toutes les 5 minutes, sur chaque site de prélèvement, avec des temps de prélèvement de 2 minutes.

L’étude de la répartition des prélèvements en fonction de leur densité bactérienne et en fonction de l’utilisation des locaux montre que dans les salles de soins individuelles, et de soins collectifs en atmosphère sèche (électrothoracoscopie) les pourcentages de prélèvements de densité se situant entre 500 et 2 000 sont élevés.

Les salles de soins humides (brouillard) montrent une certaine uniformité avec 83 % de prélèvements se situant entre 2 000 et 5 000, ce qui prouve que la qualité de

Presse thermale et climatique, 1988, 125, n° 5.
l'atmosphère est uniforme, et sans relation avec l'affluence ; l'épuration réalisée par la fixation des bactéries sur les gouttelettes de brouillard suivie de la décanation de ces dernières explique cette uniformité.

Dans les zones de circulation, l'histogramme fait apparaître une répartition plus étalée et décalée vers des valeurs plus élevées.

La numération à 37 °C ou 22 °C s'avère être, quel que soit le site de prélèvement un reflet fidèle de la fréquentation au moment du prélèvement. Selon le site de prélèvement, les valeurs maximales peuvent y atteindre des pointes de l'ordre de 25 000 bactéries/m³. L'amplitude des variations de densité bactérienne est plus importante pour les bactéries cultivant à 37 °C, les valeurs élevées sont 40 à 50 fois supérieures à celle du bruit de fond. On peut donc valablement considérer que la numération des germes par culture sur gélose à 37 °C constitue un indicateur de risque plus sensible que celle à 22 °C. Il convient toutefois de noter que la numération à 22 °C n'est pas non plus dénuée d'intérêt : nous avons, en effet, noté que dans les lieux de passage, de volume importants tels que les halls, le rapport des valeurs maximales à 37 °C et des valeurs maximales à 22 °C avait une valeur de 0,71 à 0,65, alors que dans les lieux où la population circule et stagnent, ce rapport est toujours supérieur à 1 et peut même atteindre des valeurs voisines de 3. Si la numération à 37 °C peut constituer à elle seule un indicateur de risque, le rapport des valeurs à 37 °C et à 22 °C peut constituer un indicateur de salubrité. Les renseignements tirés de ce rapport pourraient permettre de réduire le nombre de prélèvements pour le contrôle.

CONCLUSION

En conclusion, on peut retenir que la numération à 37 °C peut constituer un indicateur de la qualité de l'air. Les valeurs avancées par divers auteurs sont très variables, nous ne disposons pas d'indications, ni de preuves scientifiques, nous permettant de fixer une valeur. A la lumière des résultats obtenus, il nous semble prudent de recommander une valeur moyenne de 500 bactéries/m³ obtenus sur plusieurs prélèvements espacés dans le temps pour les salles de soins individuels ou collectifs et une valeur moyenne de 1 000 bactéries dans les voies de circulation en autorisant toutefois des pointes à 2 000 bactéries compte tenu du fait que le temps d'exposition est plus bref.

Les mesures envisageables pour obtenir ces résultats sont de deux ordres : les unes, d'ordre technique, résident dans la conception ou l'amélioration des installations pour mieux maîtriser l'assainissement ; les autres, d'ordre administratif, résident dans l'organisation des soins pour maîtriser la dynamique des populations. Le raisonnement en matière de biocontamination des atmosphères dans les établissements thermaux peut être calqué sur celui que l'on tient en matière de pollution atmosphérique urbaine, la mise en place d'un plan de circulation pour éviter les embouteillages est une solution logique qui a le mérite d'être peu onéreuse.

Les matériaux utilisés dans le transport des eaux minérales

G. POPOFF *

(Paris)

L'eau minérale est un fluide à plusieurs titres. Par son rôle cryothérapique en premier lieu, mais aussi par sa physico-chimie. Originalité de faciès donc originalité d'approche et par conséquent originalité de solution. Cela suppose au préalable, une connaissance exacte de la composition physico-chimique de l'eau et des divers équilibres en jeu.

Les eaux minérales françaises présentent un éventail très large de composition à la différence des autres eaux naturelles que sont les eaux potables. Celles-ci ont fait l'objet depuis très longtemps d'études de comportement avec les matériaux. Il en a été de même pour les eaux marines par nécessité, où les problèmes de corrosion sont importants. Le thermalisme, pour sa part, se situe entre ces deux approches, ce qui explique le nombre restreint d'études qui lui fut consacré. Devant la complexité des installations thermales, une démarche empirique n'est plus concevable.

Ces eaux minérales peuvent se modifier au cours de leur parcours dans l'établissement thermal avant les applications cryothérapeutiques. Il est donc primordial de distinguer avec précision les modifications naturelles pouvant constituer tout ou partie du traitement, des modifications accidentelles liées à l'interaction eau-matériaux.

* Ministère de la Solidarité, de la Santé et de la Protection Sociale, Laboratoire National de la Santé, Département des Études Hydrologiques et Thermales, 1, rue Lacretelle, 75015 PARIS.

Presses thermale et climatique, 1988, 125, n° 6.
ANALYSE DE L’EAU

La chimie des ions en solution permet d’envisager toutes les combinaisons ioniques possibles respectant les équilibres thermodynamiques et cinétiques. L’acquisition des espèces minérales dans le gîte aquifère est liée, bien entendu, à la nature géologique du sous-sol. Par conséquent, il n’est guère surprenant de constater la multiplicité de nature des eaux, émergeant souvent en état de déséquilibre : eaux bicarbonatées calciques, sodiques, carbogazeuses, ferrugineuses, chlorurées sodiques, sulfatées calciques, sulfurées sont autant de types d’eaux susceptibles d’évoluer avec l’environnement.

Cette évolution accidentelle peut débuter au sein même du gîte aquifère par suite du déséquilibre engendré par le captage de l’eau. C’est ainsi qu’une eau peut devenir incrustante au cours de sa remontée dans le forage par suite de dégazage. Le dépôt de sels de calcium mélés à du fer et du manganèse provoque des phénomènes de corrosion avec les surfaces métalliques.

D’autre part, les eaux agressives cherchent à se mettre en équilibre thermodynamique par apport d’espèces minérales extérieures à l’eau. Ces éléments leur seront apportés par les matériaux des canalisations. En contre-partie des aspects liés à la corrosion, on observera la formation de dépôts ou de précipités de sulfures de fer, de plomb, de cuivre accompagnant des carbonates insolubles.

MATÉRIAUX DE TRANSPORT DES EAUX

Le transport des eaux commence avec le captage, dès le niveau de la crêpine du forage lorsqu’il existe. Il s’agit donc de trouver un matériau possédant à la fois d’excellentes qualités mécaniques, une mise en œuvre facile, une bonne tenue chimique et pour clore le tout, un coût raisonnable. La solution adoptée par l’exploitant résulte le plus souvent d’un compromis entre ces qualités. Il n’existe pas encore de matériau universel. Pourtant, la technologie a progressé ces dernières années et l’on remarque l’apparition, timide, de matériaux réservés jusque là aux laboratoires.

Acier

C’est un matériau très fréquemment utilisé pour les eaux classiques et essentiellement dans le tubeau de forages. Il est formellement déconseillé pour les eaux instables à cause de la corrosion intense qui entraine une quasi dissolution du métal.

Acier galvanisé

Il est encore très répandu dans la distribution d’eau minérale des thermaux anciens. Ce matériau devrait néanmoins être systématiquement remplacé par des matériaux plastiques à cause de sa grande réactivité avec les eaux agressives.

Cuivre

Il se rencontre fréquemment dans la petite distribution, au niveau des salles de soins et de l’alimentation des appareils. Les anciennes robinetteries n’en sont pas exemples, ce qui provoque quelques désagréments avec les eaux instables. Ce matériau doit être absolument proscrit pour toutes les eaux sulfurées par suite de formation de sulfures de cuivre insolubles. Cependant, suivant le type d’eau sulfuree (calcique ou sodique) il se déposera un sulfate insoluble combiné à un dépôt de soufre colloïdal de sulfate ou de carbonate de calcium protecteur, ces derniers dépôts ayant l’avantage de passer le métal.

Aciers inoxydables

De gros progrès ont été réalisés lors de l’introduction de ces matériaux, progrès qui ne furent pas toujours à la hauteur des espérances. L’acier inoxydable le plus usité est un acier allié au chrome et au nickel, effectivement inoxydable dans la totalité des applications eaux (potables ou minérales embouteillées) par suite de l’équilibre des espèces ioniques présentes. Généraliser le classique 18/10 provoque parfois quelques surprises, spécialement avec les eaux chlorurées sodiques et ferrugineuses chaudes, les eaux sulfurées et les eaux carbogazeuses. Une qualité particulière à base de titane et de vanadium, d’utilisation courante en marine demeure une solution technique très onéreuse. L’exploitant recherchant la corde de la sécurité, doit donc consulter le fournisseur et lui demander des garanties en fonction de l’analyse de l’eau. Un investissement de cette nature se conçoit aisément dans le choix de l’équipement d’un forage, pour d’évidentes contraintes mécaniques. Pourtant, en fonction des couches géologiques traversées par les forages, un investissement de cet ordre peut être superflu notamment grâce aux progrès des matières plastiques.

MATIÈRES PLASTIQUES

Des matières plastiques, il en existe de toutes sortes, aux propriétés intéressantes. Rares sont celles répondant aux spécifications imposées en thermalisme : contraintes mécaniques (mise en forme, résistance mécanique, débit), physiques (température de l’eau), chimiques (inertie vis-à-vis des eaux de toutes natures, agressives, instables), médicales (absence de migration de monomères ou de solvants), organoleptiques (odeurs d’éventuels solvants particulièrement décevantes en traitement ORL ou microbiologiques).

L’état de surface interne du matériau est plus important encore avec les plastiques qu’avec les matériaux métalliques. Il doit être aussi lisse que possible afin de réduire au maximum les phénomènes de catalyse hétérogène, ainsi que la fixation et la prolifération de colonies bactériennes.

Les matériaux les plus utilisés sont :
- le polyéthylène : particulièrement conseillé pour toutes les eaux, y compris les eaux sulfuriées dont la température n’excède pas 25-30 °C par sécurité. Au-delà on dénote l’apparition de problèmes organoleptiques incompatibles avec une utilisation médicale ;
- le PVC : le matériau d’usage général pour toutes les eaux de température inférieure à 55 °C. Il présente à l’heure actuelle de meilleures garanties d’hygiène et d’innovtice. Comme avec les autres matériaux, il est évident que seule la qualité fera la différence, mais à l’heure actuelle, l’industrie du PVC, héritière d’une longue tradition sait fabriquer d’excellentes résines à base de PVC ;
- polymères fluorés : de type PVDF, ils sont réservés en priorité aux applications délicates : haute température combinées à une agressivité importante notamment pour
les eaux sulfurées chaudes. Le coût élevé de cette technologie demeure tout de même un obstacle à sa généralisation.

L'ensemble de ces matériaux plastiques s'accompagne d'une panoplie d'accessoires de plomberie particulièrement étudiés (vannes, raccords, etc.). Il faudra veiller particulièrement à réduire les discontinuités de surfaces occasionnées par les joints, vannes qui sont autant de facteurs de fixation de colonies de germes.

— Verre : j'y inclurais volontiers la fonte vitrifiée qui représente encore la meilleure solution, en raison de contraintes rédhibitoires de débit, de pression, température et d'agressivité de l'eau.

— Pyrex : c'est le matériau du dernier recours. D'application très restreinte en thermalisme, il demande tout de même certaines précautions de mise en œuvre, notamment pour le tubage des forages.

STOCKAGE DE L'EAU

Il s'agit dans ce cas d'une simple transposition des problèmes de transport où le paramètre temps de contact et la géométrie des installations jouent un rôle important. En matière de stockage, il est toujours hasardeux de généraliser l'usage d'un matériau par référence à des cas voisins. Le paramètre composition physico-chimique est très important dans la mesure où l'interaction eau-matériau peut aller aussi loin que la cinétique le permet. C'est ainsi qu'avant d'envisager une solution de stockage, il est vivement conseillé de tester le matériau, au besoin avec une simulation, afin de vérifier sa compatibilité. Le label homologation pour eau potable ne peut en aucun cas servir de critère suffisant pour une homologation eau minérale. Un matériau testé sur une eau peut donner des résultats parfaitement contradictoires avec une autre eau minérale. C'est ainsi que l'on trouve dans cette catégorie toute la panoplie de revêtements internes de réservoirs en résine acrylique, peintures, etc. rencontrés en eau potable. Ces matériaux contiennent de grandes quantités de solvants résiduels, de monomères en tout genre, de plastifiants qu'un séchage prolongé sur le support au moment de l'application n'élimine qu'imparfaitement. Le contact avec une eau agressive ou instable (eau sulfurée) peut provoquer des réactions de chimie organique inopportunes et engendrer la formation de marchants. Pour éliminer l'apparition de tels revêtements de mauvaise qualité. Il serait souhaitable d'instituer une homologation pour les eaux minérales.

Un phénomène similaire est observé avec les réservoirs souples tant la diversité et la qualité de revêtements internes collés à l'enveloppe plus rigide est grande.

CONCLUSION

La composition physico-chimique des eaux minérales doit être interprétée en terme d'équilibre thermodynamique et cinétique des espèces ioniques. Le choix des matériaux qui en découle doit permettre d'éviter des modifications accidentelles de chimie de l'eau minérale et assurer une conservation de ses qualités. Ce matériau doit être apte à résister aux solutions désinfectantes ou de lavage afin d'éliminer respectivement les colonies de germes ainsi que les dépôts minéraux consécutifs à l'entartrage.
Session 13
Climatologie et thalassothérapie

La bioclimatologie humaine :
situation actuelle et perspectives

E. CHOISNEL *
(Paris)

La bioclimatologie humaine regroupe actuellement un
ensemble d'études dans des domaines aussi variés que la
climatologie physique, la physiologie environnementale et
particulièrement la thermo-physiologie, l'épidémiologie et la
climatothérapie. Il convient aujourd'hui de faire un bilan des
connaissances actuelles, de redéfinir plus précisément son
champ d'investigation et de préciser l'échelle de temps des
phénomènes étudiés.

La bioclimatologie humaine a une double définition : c'est
d'une part l'étude des interactions entre l'environnement
atmosphérique et l'homme et d'autre part l'étude des inci-
dences du climat sur la santé humaine. Quels en sont les
enjeux ? Il s'agit :

— de connaître le climat des lieux de cure et leur envi-
ronnement climatique régional, d'identifier leurs spécificités
par des caractéristiques quantitatives ;
— de fournir des éléments de compréhension des impli-
cations thérapeutiques possibles de ces caractéristiques cli-
matiques particulières ;
— d'élaborer une information utile pour les besoins des
médecins.

Ainsi la bioclimatologie se distingue-t-elle de la climato-
thérapie, définie comme étant « l'utilisation thérapeutique
de la cure de séjour d'un malade dans un site dont le cli-
mat a pour lui des effets bénéfiques sur sa santé ».

D'un point de vue pratique l'étude d'un phénomène at-
mosphérique ou biologique revient en fait à se poser deux
questions : Est-ce que ce phénomène varie en fonction du
temps ? Est-ce que ce phénomène varie en fonction de
l'espace ?

Dans la suite de cet exposé il y a une hypothèse qui est
impliquément faite : on suppose que le climat actuel fluctue
autour d'un état moyen, fonction avant tout, à l'échelle
régionale, de la latitude, de la saison, de la continentalité
et de l'altitude.

ÉCHELLE DE TEMPS DES PHÉNOMÈNES

L'étude historique réalisée par Sargent (1982) montre
qu'une des premières constatations faites dans le domaine
des relations entre le climat et la santé humaine a été la
mise en évidence de cycles saisonniers des maladies, variables
dauteurs d'un pays à l'autre.

Afin de sérier les problèmes et à la lumière des connais-
sances actuelles on peut distinguer trois échelles de temps
autour desquelles se regroupent les phénomènes :

— Les effets à très court terme des changements atmo-
spériques à une échelle de temps de l'ordre de 1 à 2 jours.
Dans ce type d'interaction ce n'est pas a priori le sujet qui
se déplace mais la situation atmosphérique qui fluctue au
gre de la succession des types de temps. Une synthèse récente
(Choisnel et al., 1987) a fait le point des études françaises
des dix dernières années dans le domaine des accidents vas-
culaires. Il s'agit pleinement du domaine de la biométéoro-
alogie.

— Les effets à moyen terme, à une échelle de temps de
l'ordre de 10 à 15 jours. C'est le domaine de l'accclimate-
ment, c'est-à-dire l'adaptation de l'organisme humain à vivre
dans un milieu différent de celui dans lequel il vit habi-
tuellement. C'est le cas typique de la personne qui dans ses
déplacements change de climat : cas du sportif qui part
faire une compétition à l'étranger, mais aussi le cas de plus

* Météorologie Nationale, Division de Climatologie, 2, avenue
Rapp, 75007 PARIS.
en plus fréquentes des vacanciers changeant brutalement de climat le temps d’un trajet par avion. Dans nos climats tempérés l’homme ne subit un tel changement que par un déplacement notable en latitude ou en longitude car la durée de persistance d’un type de temps excède rarement une dizaine ou une quinzaine de jours, sauf anomalie climatique exceptionnelle telle que la sécheresse du printemps et de l’été 1976.

L’aptitude à l’acclimatation a été au début surtout étudiée dans le cadre de l’acclimatation à l’altitude, puis en médecine aéronautique. Le temps nécessaire à l’acclimatation est variable suivant les individus (Grandpierre, 1968). L’acclimatation met en jeu le système endocrinien auquel est associée la notion du temps de réponse.

— Les effets à long terme correspondant à une durée de séjour d’un mois ou plus. C’est ce qui correspond à la cure climatique de séjour. C’est spécifiquement le domaine de la bioclimatologie. Examinons maintenant quel type d’information peut être apporté dans ce domaine, ce que nous pouvons appeler le conseil climatique.

CONSEIL CLIMATIQUE

Réservons donc ce terme à un séjour d’une durée d’un mois ou plus, dans un climat différent du climat habituel du lieu d’habitation de la personne concernée. Ce conseil climatique s’appuie sur la connaissance des spécificités locales des lieux de cure, dans un site topographique donné. L’outil d’investigation est sous cet aspect la topoclimatologie (Choisnel et Joca, 1987) qui sera évoqué ci-après.

Il faut également connaître les contre-indications (dates d’ouverture de la station) liées à une spécificité saisonnière de la cure de séjour dans un site donné. Il apparaît de plus nécessaire d’opérer un travail de classification des affections susceptibles de faire l’objet d’une indication de cure (spécificités cliniques). À l’heure de la télématique et des systèmes experts de telles considérations sont à l’ordre du jour en médecine actuellement. L’établissement de cette classification des affections en climatologie médicale a pour corollaire une remise à jour des bases cliniques de la climatothérapie intégrant les connaissances physiologiques actuelles.

Rappelons à ce sujet que le traité, en langue française, de climatologie biologique et médicale de Piéry, alors professeur à la Faculté de Médecine de Lyon, date de 1934 !

A qui le conseil climatique peut-il s’adresser ?

— à certains malades aux affections bien ciblées ;
— aux convalescents non médicalisés mais suivis par leur médecin traitant ;
— aux sportifs de compétition.

Pour ces derniers le conseil dépasse le contexte français et nécessite une meilleure connaissance des climats des pays étrangers.

DIVERS MODES D’ACTION POSSIBLES DU CLIMAT SUR L’HOMME

Le recensement des processus d’interaction entre l’organisme humain et le climat nécessiterait un examen détaillé des différents secteurs de la physiologie humaine. On peut regrouper ces modes d’action du climat sur l’homme, ainsi que l’a proposé Becker (1974), en quatre classes d’effets physiologiques. Pour chaque classe d’effets il faut de plus précis la fonction ou le système mis en jeu et les variables météorologiques correspondantes. On distingue donc :

— les effets thermiques : les fonctions mises en jeu sont la thermorégulation, la respiration, la circulation ainsi que les processus de l’équilibre hydrique du milieu intérieur. Les variables météorologiques qui interviennent sont la température de l’air, les rayonnements solaire et infrarouge de grande longueur d’onde (atmosphérique et terrestre), l’humidité absolue de l’air et le vent ;

— les effets biochimiques au niveau de la peau : c’est le système endocrinien qui est mis en jeu, notamment dans le processus de synthèse du complexe vitamine D. La variable météorologique à connaître, et donc à mesurer, est le rayonnement dans la gamme ultraviolette solaire (de longueur d’onde inférieure à 0,38 μm). Il faut distinguer (Blum, 1964) trois gammes de longueur d’onde dont chacune a un effet biologique spécifique : l’UVB de 0,315 μm à 0,38 μm (effet de pigmentation), l’UVA de 0,28 μm à 0,315 μm (érythème et synthèse de la vitamine D) et l’UVC inférieur à 0,28 μm (effet photochimique et de stérilisation) ;

— les échanges gazeux : ceux-ci dépendent de la composition chimique de l’air inspiré. Les fonctions respiratoire, circulatoire et les processus d’équilibre hydrique sont concernés. Les variables à prendre en compte sont les pressions partielles de vapeur d’eau, d’oxygène et de gaz carbonique ainsi que la détection du bruit et des aérosols. Le phénomène principal modifiant ces échanges gazeux est bien entendu la décroissance systématique de la pression partielle de l’oxygène de l’air avec l’altitude ;

— les effets électriques : ce sont les effets liés à l’activité électrique de l’atmosphère. Ils ont un rôle à jouer dans les processus d’effets précédents. Les systèmes mis en jeu seraient le système respiratoire et le système nerveux mais ce mode d’action de l’atmosphère sur l’organisme est pour le moment mal connu. Les variables à prendre en compte sont, à priori, les différents paramètres de l’électricité atmosphérique : le gradient vertical de potentiel électrique, le comptage des décharges atmosphériques, l’ionisation de l’air et la conductibilité électrique de l’air. En ce qui concerne l’étude des effets de l’ionisation atmosphérique il faut constater que si la littérature est dans ce domaine abondante il y a par contre peu de résultats établis et confirmés par des expérimentations indépendantes.

Notons cependant que Tromp (1980) indique comme effets d’un excès d’ions gazeux chargés positivement. Il en recense trois qui sont les suivants :

— diminution de la motilité des cils vibratiles de la trachée artère (travaux de Krueger et Smith, 1958) ;
— diminution de la capacité pulmonaire totale ;
— assèchement de la surface des muqueuses de la trachée.

ÉLÉMENTS DE RÉPONSE

Il s’agit avant tout de valoriser les données climatiques existantes, sachant que la description du climat nécessaire de longues séries de mesures, en principe 30 ans (Choisnel, 1985). Les données peuvent exister sur manuscrit, c’est sou-

Presse thermale et climatique, 1988, 125, n° 5.
vent le cas pour les données thermométriques; il reste à les saisir sur support traitable par l'informatique. Si les données existantes ne correspondent pas exactement au site étudié, il conviendra de réaliser une interpolation spatiale des données, en particulier pour la pluviométrie et la thermométrie.

Pour l'élaboration d'une information destinée au corps médical en matière de biométrie, trois principes doivent guider notre investigation:

- identifier les paramètres climatiques élémentaires importants et leur combinaison particulière suivant la fonction physiologique mise en jeu;
- respecter les règles de l'analyse climatologique (Choisnel, 1985);
- ne pas perdre de vue que, du fait du mode de fonctionnement de l'atmosphère (notion de type de temps), la variabilité temporelle est toujours plus importante que la variabilité spatiale au sein d'un même climat régional (fig. 1). La délimitation des climats régionaux de plaine a été réalisée pour la France (Choisnel, 1986). Pour les zones montagneuses il faut descendre à une échelle sub-régionale (Choisnel et Van Thournout, 1987), qui pour les Alpes françaises par exemple est de l'ordre de 30 kilomètres.

Examinons maintenant les modes d'élaboration de cette information. Il faut tout d'abord définir de nouvelles variables en général plus élaborées que les paramètres climatiques de base. C'est le calcul d'indices bioclimatiques combinés. Dans le domaine du confort thermique et de la thermorégulation, l'analyse des échanges thermiques permet de réaliser un modèle de simulation (Choisnel, 1976) qui peut également déboucher sur la construction d'un indice. Il faut savoir simplement que l'utilisation d'indices en biométrie nécessite ipso facto, pour l'interprétation et l'analyse statistique de cet indice, la détermination de valeurs-seuil. Ensuite des statistiques de référence de cet indice sont effectuées en chaque point de mesure disposant d'une longue série de données. Il faut à la fois pouvoir caractériser le climat moyen mais également la variabilité du climat autour de cet état moyen. Ensuite cette information peut être représentée sous forme cartographique à une échelle adéquate en fonction de la densité spatiale des points de mesures. Des méthodes de cartographie automatique avec prise en compte du relief peuvent s'avérer utiles en région montagneuse à l'avenir.

Pour les stations de cure climatique deux approches complémentaires peuvent être mises en œuvre; d'une part le volet avant tout climatique qui se traduit par l'étude topoclimatique du site (Choisnel et Jacq, 1987), d'autre part le volet plus médical qui consiste à sélectionner des critères de classification des stations. Pour ce second volet des propositions ont été faites pour la Suisse et des normes précises ont été publiées en République Fédérale d'Allemagne (Pirmault, 1979).

Dans certaines régions, en particulier dans la moitié sud de la France, une étude climatique des vents régionaux (Mistral, Tramontane, Autan) est indispensable de façon à connaître leur fréquence d'occurrence qui est marquée par une fluctuation saisonnière (Choisnel et Van Thournout, 1987).

Enfin à une échelle de temps intermédiaire entre celle de la biométrie et celle de la climatologie (voir échelle de temps des phénomènes) un suivi précis de l'année en cours peut permettre de repérer et de caractériser quantitativement tout anomalie climatique qui se prolonge, en gros sur dix jours ou plus.

Fig. 1. — Les climats régionaux français (Choisnel, 1986 [5]).

ÉTUDE DES TOPOCLIMATS

C'est une branche nouvelle de l'analyse climatologique qu'il convient de systématiser afin de pouvoir comparer de façon objective des sites différents. Une méthode d'étude des topoclimats a été récemment proposée (Choisnel et Jacq, 1987).

Trois types de topoclimat ont été envisagés: le topoclimat de moyenne montagne, le toposclimat de bord de mer et le topoclimat urbain.

CONCLUSION

La bioclimatologie humaine constitue une discipline à part entière. C'est une étape préalable à la climatothérapie. Elle doit prendre en compte les facteurs qui déterminent le climat et en particulier la notion d'échelle d'espace. Ceci doit permettre de distinguer des spécificités régionales liés à un aspect saisonnier et des spécificités locales plus liées à la configuration topographique particulière d'un site.

RÉSUMÉ

La bioclimatologie humaine a été définie comme l'étude des interactions entre l'environnement atmosphérique et l'homme, et des incidences du climat sur sa santé. Il convient d'abord d'une part de préciser l'échelle de temps des phénomènes biologiques étudiés et d'autre part de caractériser correctement les différents climats régionaux et types de topoclimat rencontrés en France. Parallèlement l'examen des divers modes d'action possibles du climat sur l'homme peut permettre de déterminer quels sont les éléments d'information de type climatologique utiles pour les médecins.

Pressie thermale et climatique, 1988, 125, no 5.
conseil climatique de séjour qu’ils sont amenés à élaborer pour les malades doit prendre en compte les spécificités de chaque type de toponclimat des lieux de cure ou de séjour. Ainsi, l’étude bioclimatique est une étape préalable à la climatotherapie proprement dite et à l’investigation des implications thérapeutiques éventuelles des climats.

REFERENCES

Cure climatique d’altitude et asthme bronchique

Critères objectifs d’appréciation

Résumé

H. RAZZOUK *

(Briançon)

Tout le monde admet actuellement que la cure climatique d’altitude représente un moyen thérapeutique appréciable dans le traitement de l’asthme grave invalidant type III et IV. Cette cure permet de stopper immédiatement les attaques d’asthme, d’arrêter la corticothérapie au long cours, de pratiquer un bilan allergodécalcique dans de bonnes conditions, d’effectuer une désensibilisation spécifique sans risque de réaction syndromique et de procéder à un ré entraînement à l’effort.

Nous avons voulu connaître, chez les asthmatiques, l’effet de la cure climatique d’altitude sur un certain nombre de paramètres objectifs et avons constaté :

— Sur le plan fonctionnel une nette diminution de la résistance des voies aériennes en même temps qu’une augmentation du VEMS et du DEMM 25/75 l/s ; la réactivité bronchique a été également modifiée, au delà de deux mois de séjour, chez 45 sujets dont la moyenne arithmétique de la DL Carbocat passe de 120 gamma à l’arrivée, à 345 gamma après trois mois de séjour.

— Sur le plan biologique, la gazométrie artérielle sanguine contrôlée à l’arrivée et en fin de cure, nous a montré une augmentation importante de l’oxyémétrie et de la saturation oxyhémoglobine, au repos et à l’effort ; le cortisol plasmatique a été également contrôlé chez les différents asthmatiques aussi bien corticodépendants ou non. Nous avons constaté, dans tous les cas, une relance de la fonction surrénalienne manifestée par une forte augmentation du taux de cortisol plasmatique en fin de séjour.

— En ce qui concerne l’évolution du taux des IgE globales et spécifiques, ces IgE qu’elles soient globales ou spécifiques ont subi une régression progressive supérieure à 50 p. cent au bout de 6 mois de cure climatique d’altitude.

Nos résultats à long terme ont été étudiés au moyen d’une enquête rétrospective avec un recul de 1 à 5 ans. L’analyse statistique de 1081 réponses exploitables nous a démontré des réponses très favorables, favorables, assez favorables de l’ordre de 76,55 p. cent.

Ces constatations cliniques, établies par les paramètres objectifs d’appréciation, démontrent que l’intérêt d’une telle méthode de traitement est d’autant plus importante que la rémanence des résultats s’avère stable dans la majorité des cas.

* Centre de Cure Les Acacias, 05100 BRIANÇON.

Presse thermale et climatique, 1988, 125, no 5.
La climatothérapie de l’asthme

B. PRIMAULT *
(Zurich, Suisse)

A première vue, on pourrait classer l’asthme parmi les maladies météorotropiques. En effet, ses crises sont subites et rien n’en laisse prévoir l’apparition. En outre, elles se reproduisent à intervalles irréguliers, laissant entrevoir une action extérieure sur leur déclenchement.

Mais la crise d’asthme est le plus souvent le signe d’une réaction allergique à un corps étranger. La présence d’un allergène particulier sur certaines muqueuses ne produit pourtant pas nécessairement une réaction allergique. Pour cela, deux conditions sont nécessaires : que le patient soit allergique à ce corps particulier et que son organisme soit mis en état de réceptivité par les conditions ambiantes, l’évolution du temps en particulier. Vue sous cet angle, la crise d’asthme est une maladie météorotropique et c’est vraisemblablement ce qui explique pourquoi, l’allergène étant présent, un patient sensible n’est pas en état de crise permanente.

Les problèmes de réceptivité dépendent avant tout de la constitution des individus. Ainsi, l’augmentation du nombre d’asthmatisques proviendrait d’une dégénérescence du genre humain, dégénérescence qui rend un plus grand nombre d’individus réceptifs lors de situations météorologiques déterminées. En effet, les pollens, les spores et les acariens domestiques ont toujours existé dans l’air inspiré. C’est la réceptivité des patients qui s’est modifiée.

Nous reviendrons plus loin sur le problème des acariens domestiques. Attachons-nous tout d’abord à l’examen des conditions météorologiques qui conduisent à la présence de pollens et de spores dans l’air inspiré.

Dans ces deux cas particuliers, il faut considérer trois phases distinctes qui, toutes trois, dépendent étroitement de conditions météorologiques particulières. Ces trois phases sont : l’émission, le transport et l’immission.

L’émission suppose d’une part que la plante a atteint le stade de floraison et que, d’autre part, les conditions météorologiques sont favorables au dégagement du pollen. En effet, chaque espèce végétale et, à l’intérieur de celle-ci, chaque race a ses exigences spécifiques vis-à-vis des paramètres météorologiques. Ainsi, les températures cumulées au-dessus d’une certaine valeur doivent avoir atteint un certain seuil pour que la plante fleurisse et l’humidité de l’air doit être suffisamment basse pour que les anhères se vident.

Les grains de pollen une fois libérés ne tombent généralement pas à terre. Ces grains sont entraînés par le vent sur de grandes distances et à de très hautes altitudes si la turbulence est forte. On en a ainsi récupéré déjà jusqu’à plus de 10 000 m d’altitude.

Pour que ces grains atteignent les muqueuses des patients, il faut cependant qu’ils se rencontrent au voisinage immédiat du sol. Ils doivent pour cela être soumis à une certaine sédimentation provoquée généralement par une forte humidité. Des phénomènes semblables conduisent à la présence de spores dans l’air.

On voit, par ces quelques rappels, que dans tous ces processus de répartition, les conditions météorologiques jouent un rôle prépondérant. Ni le patient, ni le médecin traitant, ni le médecin de cure ne peuvent saisir tous ces phénomènes. Seul le météorologue en est capable, lui qui suit jour après jour l’évolution des paramètres dont il faut tenir compte pour la détermination de l’importance relative des différentes phases décrites.

L’état actuel des recherches ne permet malheureusement pas encore de calculer le moment de la floraison des plantes en partant des seules conditions météorologiques. Des observations phénologiques effectuées dans les zones de production et des comptages polliniques dans les zones de transport et de sédimentation permettent cependant déjà au météorologue spécialisé d’apporter à l’homme de l’art un certain appui.

Dans mon propos, et mon titre en fait foi, je désire cependant aborder un autre aspect de l’application pratique de ces constatations : la prévention des crises par la sous-traction du patient à la présence de l’allergène. D’aucun me diront avec une certaine vue futuriste que des prévisions du temps tenant compte de ces besoins et interprétées judicieusement permettraient de résoudre ce problème. Toutefois, le titre de mon intervention est climatothérapie et non pas météorothérapie de l’asthme.

Pour beaucoup de confrères, les mots climatologie et météorologie sont synonymes. Or il n’en est rien. Si le second de ces termes englobe en quelque sorte le premier, celui-ci concerne une partie bien précise des sciences de l’atmosphère : l’étude de la variabilité naturelle et des limites dans lesquelles se meuvent les divers paramètres météorologiques. Cette définition de la climatologie montre déjà que l’époque à laquelle il faut s’attendre à des crises d’allergie dues à la présence de pollens ou de spores n’a rien de fixe. Des cartes retraçant des moyennes de température ou d’humidité se rapportant aux mois critiques ne sont ici d’aucune utilité. Ce qu’il faut mettre en évidence, ce sont les fluctuations naturelles du phénomène et, par là, déterminer la notion du risque encouru à un endroit donné et à un moment précis. Pour ce faire, de nouveaux dépouillements des données météorologiques sont indispensables. Tant que nous ne posséderons pas de modèles de la croissance des plantes, le début des trajectoires suivies par l’allergène devra être déterminé par un autre moyen : l’observation phénologique.

Dans certains pays, on dispose déjà de séries d’observations phénologiques dont l’échelle temporelle s’avoue elle de celle de la climatologie. Selon l’Organisation Météorologique Mondiale (OMM), une série doit couvrir au moins 30 an-
nées pour être qualifiée de climatologique. En étudiant en
détails ces séries et les trajectoires qui en découlent, on pour-
ra établir le risque encouru.

Que doit entreprendre un patient soumis à un tel risque ?
Il lui faut se soumettre à un traitement ou, si c’est possi-
ble, gagner un lieu où le risque est encore ou de nouveau
nul ou tout au moins très faible. On pourra utiliser ces
mêmes études afin de déterminer cet autre lieu de résidence.

Dans la propagation de certaines stations, on lit que « l’air
y est exempt de pollen ». C’est une tromperie, car il n’existe
aucun endroit de la terre qui réponde à une telle définition.
De tels raccourcis ou slogans nuisent à la crédibilité des
cures climatiques. Il serait plus judicieux d’établir pour ces
stations des statistiques de la présence de certains pollens et
des calculs climatologiques du risque d’apparition de cette
catégorie d’allergènes.

Comme nous l’avons relevé plus haut, les acariens domes-
tiques constituent la catégorie d’allergènes la plus redoutée
bien des asthmatiques. Comme leur nom l’indique, ces
insectes vivent à l’intérieur des habitations et ne sont pas
conséquents sous processus météorologiques du monde extérieur.
Ce n’est que partiellement vrai. Certes, les fluctuations rapi-
des de la température, les coups de vent, les rayons directs
du soleil ne les atteignent pas. Pourtant, leur développement
est, tout comme pour les plantes et les champignons, déter-
méne en majeure partie par les conditions ambiantes dans
lesquelles ils vivent ; par leur microclimat ou leur micromé-
téorologie selon l’échelle temporelle considérée.

Durant bien des années, on a prétendu que le petit nom-
bré, voire l’absence d’acariens dans les habitats de montagne
était dû à la siccité de l’air. Or, quelle que soit l’unité que
l’on utilise pour l’exprimer, on ne distingue pas de différences
fondues entres la plaine et la montagne qui expliqua-
ient le trouble phénomène. Depuis quelques années, le nombre
d’acariens augmente assez rapidement dans les stations de
montagne, principalement dans les habitations modernes
chauflées durant tout l’hiver. Ce fait démontre que, par le
passé, le froid pénétrant dans les habitations y détruisait
chacun hiver la quasi totalité des acariens. Certes, durant
l’été, une certaine population pouvait s’y recréer à partir de
quelques individus ayant survécu ou d’apports extérieurs. Le
climat de montagne et le froid qu’il implique n’agit que si
on les laisse se manifester à l’intérieur des habitations.

En outre, le fort rayonnement ultra-violet y diminue, voire
amplifie la contamination d’acariens par voie aérienne, sur-
tout lors d’un usage intempestif de l’aspirateur à poussières
par fenêtres ouvertes. En effet, ce genre d’insectes, tout
comme les virus de certaines bactéries d’ailleurs, ne supporte
pas ce rayonnement particulier.

En conclusion, rappelons que des études systématiques des
conditions climatologiques et météorologiques permettront
une estimation du risque de présence d’allergènes et cela
séul à l’extérieur qu’à l’intérieur des habitations. Elles ne
supprimeront cependant pas, et pour longtemps encore, la
nécessité de procéder à des contrôles par le moyen de dé-
comptes de pollens et de spores.

Influence de l’entraînement à l’effort
en atmosphère chaude et saturée de vapeur d’eau
chez l’asthmatique adulte

Y. LANUSSE *, J. HOUNAU, P. DIEUDONNE,
J.M. QUERBES, E. KLAHR, R. MENIER
(Combes-les-Bains)

POPULATION ÉTUDIÉE

La population étudiée comprend 40 adultes asthmatiques
de longue date (26 hommes et 14 femmes) d’âge moyen
54 ans qui ont suivi leur entraînement jusqu’à son terme.
Ils ont été comparés avant entraînement à 30 témoins
sains de même âge et de même répartition entre les deux
sexes. Les grandesurs mesurées ont été : débits et volumes
pulmonaires au repos (VEMS, CV, VEMS/CV) et à l’effort
(VE max) ; gaz du sang artériel au repos (PaO2 et PaCO2) ;
puissance maximale tolérée (PMT) ; consommation maximale
d’oxygène (VO2 max). Le tableau I rapporte les données
mesurées au repos et à l’effort chez les asthmatiques et les
témoins sains.

Il existe chez les asthmatiques une diminution très haute-
ment significative de ces grandeurs, (P < 0,001), sauf pour
PaCO2. L’asthme ancien diminue les données mesurées au
repos (PaO2, VEMS, CV) et à l’effort (PMT, VO2 max, VE
max) et réalise un tableau d’insuffisance respiratoire chrono-
lique. Ces patients souffrent non seulement de crises aigües
paroxystiques mais aussi d’une dyspnée d’effort invalidante
qui les fait classer dans la catégorie des asthmes à dyspnée
continue. Le but des programmes d’entraînement à l’effort
chez l’insuffisant respiratoire est d’améliorer la condition
physique en améliorant les paramètres respiratoires et ven-
tilatoires.
CLIMATOLOGIE ET THALASSOTHERAPIE

TABLEAU I. — Données mesurées au repos et à l’effort chez les asthmatiques et les témoins sains.

<table>
<thead>
<tr>
<th>Grandeur mesurée</th>
<th>Asthmatiques (36 %) m ± σ</th>
<th>30 témoins (37 %) m ± σ</th>
<th>Rapport grandeur mesurée</th>
<th>Compa- raison 2 classes de sujets</th>
</tr>
</thead>
<tbody>
<tr>
<td>VEMS (L. sec — 1)</td>
<td>1,633 ± 0,654</td>
<td>2,983 ± 0,497</td>
<td>0,55</td>
<td>P < 0,001</td>
</tr>
<tr>
<td>CV (L)</td>
<td>3,048 ± 0,887</td>
<td>4,069 ± 0,685</td>
<td>0,75</td>
<td>P < 0,001</td>
</tr>
<tr>
<td>VEMS/CV (p 100)</td>
<td>53,4 ± 13,5</td>
<td>75,3 ± 9,9</td>
<td>0,71</td>
<td>P < 0,001</td>
</tr>
<tr>
<td>PaO2 repos (torr)</td>
<td>76,4 ± 11,2</td>
<td>90,9 ± 8,5</td>
<td>0,85</td>
<td>P < 0,001</td>
</tr>
<tr>
<td>PaCO2 repos (torr)</td>
<td>37,3 ± 4,4</td>
<td>36,8 ± 2,9</td>
<td>1,01</td>
<td>NS</td>
</tr>
<tr>
<td>PMT (watts)</td>
<td>102 ± 28</td>
<td>167 ± 26</td>
<td>0,61</td>
<td>P < 0,001</td>
</tr>
<tr>
<td>VO2 max (L. min — 1)</td>
<td>1,438 ± 0,425</td>
<td>2,280 ± 0,397</td>
<td>0,64</td>
<td>P < 0,001</td>
</tr>
<tr>
<td>VE max (L. min — 1)</td>
<td>54,3 ± 20,1</td>
<td>84,3 ± 16,8</td>
<td>0,64</td>
<td>P < 0,001</td>
</tr>
</tbody>
</table>

TABLEAU II. — Données mesurées au repos et à l’effort avant et après entraînement.

<table>
<thead>
<tr>
<th>Variables comparées</th>
<th>Bilan à l’entrée m ± σ</th>
<th>Bilan à la sortie m ± σ</th>
<th>Résultats de la comparaison</th>
</tr>
</thead>
<tbody>
<tr>
<td>VEMS (L. sec — 1)</td>
<td>1,633 ± 0,654</td>
<td>1,837 ± 0,683</td>
<td>P < 0,01</td>
</tr>
<tr>
<td>CV (L)</td>
<td>3,048 ± 0,887</td>
<td>3,356 ± 1,027</td>
<td>P < 0,001</td>
</tr>
<tr>
<td>PaO2 (torr)</td>
<td>74,8 ± 11,2</td>
<td>81,0 ± 9,9</td>
<td>P < 0,01</td>
</tr>
<tr>
<td>Effort</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>PMT (watts)</td>
<td>102 ± 28</td>
<td>131 ± 32</td>
<td>P < 0,001</td>
</tr>
<tr>
<td>VO2 max (L. min — 1)</td>
<td>1,438 ± 0,425</td>
<td>1,719 ± 0,469</td>
<td>P < 0,001</td>
</tr>
<tr>
<td>VE max (L. min — 1)</td>
<td>54,3 ± 20,1</td>
<td>65,6 ± 20,1</td>
<td>P < 0,001</td>
</tr>
</tbody>
</table>

PROTOCOLE D’ENTRAÎNEMENT

Le programme d’entraînement est établi pour chaque patient après une épreuve d’effort d’évaluation cardio-respiratoire sur bicyclette ergométrique. Il s’agit d’une épreuve à puissance progressive (départ 30 watts avec incrément de 30 watts toutes les 3 minutes). Le dernier palier effectué correspond à la puissance maximale tolérée (PMT). Cette épreuve permet de mesurer la consommation maximale d’oxygène (VO2 max), le rejet de gaz carbonique (VO2), la ventilation lors du dernier palier (VE max), et de surveiller l’électrocardiogramme et la pression artérielle à l’exercice. Les sujets sont entraînés 40 minutes par jour en séries fractionnées. L’entraînement est quotidien (5 jours par semaine). La durée moyenne du programme est de 6 ± 2 semaines ce qui réalise un temps cumulé d’exercice de 20 ± 8 heures. Ces programmes se font en hospitalisation en moyen séjour ce qui nécessite une prise en charge par les caisses de recouvrement de frais d’au moins moins un mois, renouvelable au besoin pour les patients présentant une insuffisance respiratoire grave. L’entraînement est d’autant plus progressif qu’il existe une insuffisance respiratoire évoluée. L’entraînement élève la fréquence cardiaque jusqu’à la valeur maximale observée à l’épreuve d’effort initiale d’évaluation. Les sujets insuffisants respiratoires chroniques n’atteignent pas à l’épreuve d’effort la fréquence cardiaque maximale théorique : le critère d’arrêt de l’épreuve d’effort est soit la dyspnée, soit la fatigue musculaire. L’entraînement est effectué en piscine couverte : le patient nage en étant immobilisé par un contrepoids. L’eau est à 30 degrés, la saturation de vapeur d’eau de l’atmosphère ambiante est de 100 p. 100.

Plusieurs travaux scientifiques ont montré le rôle néfaste du froid et de l’air sec sur la provocation du spasme bronchique chez l’asthmatique.

RÉSULTATS SCIENTIFIQUES

Le tableau II montre les données mesurées au repos et à l’effort avant et après entraînement.

On observe au repos une amélioration significative de la pression partielle en oxygène (PaO2) et de la spirométrie (VEMS et CV). Les améliorations obtenues à l’effort sont toutes très hautement significatives (P < 0,001) avec des accroissements de 19 p. 100 pour VO2 max, de 21 p. 100 pour VE max et de 28 p. 100 pour PMT. Les améliorations observées sur VO2 max sont corrélées aux améliorations obtenues sur VE max (Δ VO2 max, Δ VE max : r = 0,571 P < 0,001) ce qui signifie que l’amélioration de la condition physique est liée à l’amélioration de la ventilation à l’effort.

CONCLUSION

L’amélioration des asthmatiques adultes insuffisants respiratoires, entraînés à l’effort en piscine en atmosphère chaude et saturée de vapeur d’eau porte simultanément sur la fonction respiratoire (PaO2), sur la condition physique (PMT - VO2 max), et sur les performances ventilatoires (VEMS — CV — VE max).

Presse thermale et climatique, 1988, 125, n° 5.
Corticoid hormones and climatotherapy
in mild high-mountain environment in patients
with bronchial asthma

J. ZVONAR *
(Bratislava, Czechoslovakia)

Climatic therapy of patients with asthma bronchiale in
mild high-mountain surroundings belongs to classical non-
medication therapeutical methods. The object of this study
is to contribute to the elucidation of the influence of cli-
matic treatment at Srbské Pleso (1 350 m above sea level)
in patients with bronchial asthma, to seek for indicators of
its mechanisms, to specify its treatment, and so find ways
of making it more effective. One of the studied parameters
were levels of plasma cortisol and excretion of its metabo-
lites in urine.

PATIENTS AND METHODS

From among the patients treated in Research Institute for
Human Bioclimatology we chose samples of patients suited
for adjunct climatic treatment at Srbské Pleso. All patients
had permanent domicile in Bratislava. Table 1 shows a
comparison of basic climatic parameters for both Bratislava
and Srbské Pleso. The principal illness of these patients was
bronchial asthma with ventilation obstruction of mild and
moderate degree (FEV 75 % or 60 %). None of the patients
examined had ever been treated with corticosteroid hor-
mones. The patients had no other grave disease. During the
stay the patients were on common daily regime, with no
physical training, no smoking and alcohol.

| TABLE 1. — Comparison of basic climatic parameters in Bratislava
| and Srbské Pleso. |
|---|---|---|---|---|---|
| | H (m) | p | u | o | t |
| Bratislava | 130-280 | 1 011 hPa | 72-74 % | 9,4 hPa | 10,0 °C |
| Sr. Pleso | 1 350 | 877 hPa | 76 % | 6,25 hPa | 3,2 °C |

The levels of plasma cortisol were determined using fluo-
rimetry (Mattingly, 1962). The urine cortisol was deter-
mined after extraction by fluorimetry (Mattingly, 1962). The
method was a modification of plasma cortisol determination.
To determine 17 OH corticosteroids we used Porter-Silber
chromogenes and determined them by colorimetry using a
phenylhydrazine reagent (Silber and Porter, 1954). All the
results were evaluated by Friedman's analysis, significant
differences between individual samples using Wilcoxon-Wil-
cox-test. The results in the diagrams are given as average
values, and the mean average errors are marked as bright
obscissas.

RESULTS

The resting levels of plasma cortisol were determined at
6, 12, 18 and 24 o'clock in the 1st, 2nd, 3rd and 5th
week of the stay at Srbské Pleso. Cortisolemia did not
change throughout the stay. The daily biorythm was also
maintained (graph 1). We compared the resting levels of
plasma cortisol on arrival to Srbské Pleso from Bratislava
and during the stay in a.m. hours (graph 2). No differences
were found (graph 3). Free cortisol in urine released within

* Research Institute for Human Bioclimatology, BRATISLAVA
(Czechoslovakia).

Presso thermale et climatique, 1988, 125, no 5.
Graph 2. — Resting values of plasma cortisol in Bratislava and during the sojourn at Strbské Pleso.

BA: Bratislava; SP 1 - 1: week of the sojourn at Strbské Pleso; SP 2 - 2: week of the sojourn at Strbské Pleso; SP 5 - 5: week of the sojourn at Strbské Pleso.

Graph 3. — Amount of free cortisol in urine excreted within 24 hrs in Bratislava and during the stay at Strbské Pleso.

Graph 4. — 24-hr excretion of free cortisol in urine divided into 8-hr portions.

Graph 5. — Daily circadian rhythm of free cortisol excretion in urine during the stay at Strbské Pleso.

Graph 6. — 24-hr excretion of 17-hydroxy-corticosteroids in urine in Bratislava and during the stay at Strbské Pleso.

Graph 7. — 24-hr excretion of 17-hydroxy-corticosteroids in urine divided into 8-hr portions.
24 hours yielded the highest excretion values during the 1st and 2nd week of the stay. During the 5th week the increased excretion resumed the initial values. The differences were statistically significant (graph 3). On dividing the 24-hour excretion to 8-hour portions we found that all portions showed the differences in free cortisol excretion (graph 4). The daily biorhythm of free cortisol excretion is maintained throughout the stay, only during the 1st week it is quantitatively higher (graph 5). The excretion dynamics of 17 OH corticosteroids in the same as with free cortisol (graph 6 and 7).

DISCUSSION

In our study we have found in the altitude of 1 350 m a different dynamics between the resting levels of plasma cortisol which did not change on arrival and during the stay, and between the excretion of 11 OH corticosteroids where free cortisol forms the largest part. During the climatic treatment the values of 11 OHCS excretion gradually increased, with maxima during week 1 and 2. The climatic therapy took 5 weeks, which time was sufficient for the changes to normalize.

Lowed oxygen partial pressure at a higher altitude along with changes of further climatic parameters stimulates secretion of hormones of adrenal cortex. This stimulation has not as yet been satisfactorily explained. On the one side, hypoxia may act as a long-term stressor (Marsh et al., 1984, Fruyser et al., 1975, Moncloa et al., 1965, Sutton et al., 1977). On the other side, hormones of the adrenal cortex play an important role as integrators and regulators of the systemic functions during aclimation to high-mountain surroundings. Increased plasma cortisol concentration has already been proved at an altitude of 2 000 m (Humpeler et al., 1980).

The different dynamics between the levels of plasma cortisol and the excretion of 11 OH-corticosteroids might have been caused either by the fact that the longer urine collecting time enables accumulation even with small changes in plasma cortisol levels, or by a possible change of the relation between the protein-bound plasma cortisol and free cortisol. The established plasma cortisol makes the sum of free cortisol and the proteinbound cortisol. Free cortisol in urine only represents a fraction of free plasma cortisol, that is, a biologically active fraction making about 10 % of plasma cortisol concentration. The binding capacity of cortisol and its binding force to transcortin depends of more factors. During stay in mild high-mountain surroundings this may be affected by blood pH, Pa CO₂, and by temperature. The binding force at lower temperature is higher and more stable (Macho, 1982). Moreover, the regulation itself of cortisol secretion becomes significantly influenced not only by its own level, but also by other nervous and humoral factors (Schreiber, 1985). Such nonspecific changes are present in mild high-mountain surroundings (Kolesá 1968, Kolesá 1970, Butyková, 1973, Papp, 1980, Zvončár et al., 1986). All these circumstances may participate in the changed relation of free and bound cortisol in plasma during aclimation in mild high-mountain surroundings.

Excretion of 17 OH-corticosteroids increased on arrival and during the first weeks of the stay, after two weeks there is a return to the initial values. However, the dynamics was not so remarkable as with 11 OH-corticosteroids.

Increased excretion of 11 OH corticosteroids and 17 OH corticosteroids suggests increased activity of the adrenocortical system during the initial weeks of the stay even at the altitude of 1 350 m. The established results are of some importance in practical use. Changes suggesting stimulation of secretion of hormones of adrenal cortex are to be considered in climatic treatment in mild high-mountain surroundings, especially in patients on long-term corticosteroid therapy where their own secretion is suppressed.

REFERENCES

5. Kolesář J., Matej M. — Der Eingriff einer Hochgebirgsklima-

corticale responses to maximal exercise in moderate-alti-

8. Mattingly G. — A simple fluorimetric method for the estima-

tion in sea level natives exposed to high altitudes (4 300 m) for two weeks. J. clin. Endocrinol. Metab., 1965, 25, 1640-1642.
10. Papp I., Butyková L., Hudac I., Kolesář J., Elsner J., Michale-

11. Schreiber V. — Stress - Patofyziologie - endokrinologické — kli-

12. Silber R.H., Porter C.C. — The Determination of 17, 21-dihy-
13. Sutton J.R., Vlai G.W., McFadden M., Keane P.M. — Renin, aldosterone, electrolyte, and cortisol responses hypoxic de-

14. Zvončá R. — Neuroendokriné veränderungen bei der akkli-

tisation auf mäusege hochgebirgsammlung. Veränderungen der sympathiko-adrenalsen Aktivität bei Patienten mit Bronchial-

Particularités du thermalisme pédiatrique
Rôle du Centre d’Etudes sur la Thérapeutique,
le Thermalisme et l’Enfant

J. VIALATTE *
(Paris)

Le thermalisme pédiatrique mérite d’être isolé. Il a des indications particulières et nécessite des techniques de soins et des structures d’accueil adaptées aux enfants. Les stations pédiatriques doivent avoir une organisation qui tienne compte de ces impératifs et aussi de la présence assez fréquente des parents.

Le CETTE, Centre d’études sur la thérapeutique, le thermalisme et l’enfant vise non seulement à promouvoir les stations thermales pédiatriques, mais surtout à provoquer des travaux qui permettront de mieux comprendre l’action bénéfique des eaux thermales et d’améliorer sur tous les plans l’accueil des enfants et de leurs familles.

ACTION DES EAUX THERMALES

L’efficacité des eaux thermales est surtout jugée sur des bases empiriques et des études épidémiologiques. Des travaux plus récents commencent pourtant à démontrer leur action bienfaisante sur la trophicité des tissus, la régulation des grandes fonctions et les défenses immunitaires. Les eaux les plus utilisées en pédia trie sont chlorobicarbonateé es, arséni cales, sulfuriées et même chlorurées sodiques. Les eaux dites indéterminées et sulfatées, surtout utilisées en cures de boisson ont moins d’indications. Mais la teneur des eaux en sels minéraux n’est pas le seul facteur bénéfique ; leur mode d’utilisation sous forme de vapeurs, d’aérosols, de bains, de douche cutanées ou nasales contribue pour une large part à leur efficacité. Il nécessite des équipements spéciaux et un personnel qualifié qui se trouvent tout naturellement rassemblés dans les stations thermales. Il faut y ajouter ce que le Professeur Lamarche appelait les techniques non thermales : information, rééducation respiratoire ou motrice, facteurs psychosomatiques liés à l’hébergement et aux loisirs plus faciles à organiser dans des établissements spécialisés qu’à l’échelon individuel. Enfin, les cures thermales des enfants sont traditionnellement liées à la belle saison dans des régions particulièrement favorisées au point de vue environnemental et particularités climatiques favorables, spécialement en ce qui concerne l’absence de pollution atmosphérique.

PRINCIPALES INDICATIONS EN PÉDIATRIE

Les plus importantes concernent les pathologies respiratoires et cutanées. La pathologie respiratoire comprend surtout l’asthme et les formes mineures d’allergie respiratoire ainsi que les rhinobronchites récidivantes si fréquentes chez l’enfant ; mais aussi d’autres affections respiratoires plus rares liées à des malformations, à des déficits enzymatiques ou à des anomalies des fonctions ciliaires. A côté de la pathologie bronchopulmonaire, les maladies qui touchent l’étage supérieur de l’appareil respiratoire et ses annexes représentent une indication importante pour la crénotherapie : otites séreuses et otites récidivantes, rhinosinusites, affections récidivantes de l’oropharynx. La pathologie cutanée concerne surtout l’eczéma sous toutes ses formes et aussi, bien que plus rarement, le psoriasis et les séquelles de brûlures ou de plaies accidentelles. La pathologie digestive ou métabolique s’adresse aux intolérances alimentaires, aux migraines, aux insuffisances digestives d’étiologies diverses en particulier secondaires à des hépatites. Les affections rénales et l’éudermie ont des indications qui me paraissent plus liées aux méthodes éducatives et disciplinaires des stations qu’aux particularités minérales des eaux.

STRUCTURES D’ACCUEIL

L’enfant peut suivre sa cure soit à partir de sa famille qui l’accompagne, soit dans un établissement qui l’héberge. Cette dernière formule, malgré les inconvénients d’ailleurs variables de la séparation, est plus favorable à une bonne discipline de cure à de multiples points de vue : régularité de vie et de repos, contrôle plus facile de l’alimentation, loisirs mieux organisés. Cet ensemble suppose une bonne organisation de base pour les locaux d’accueil, un personnel qualifié de soins et d’encadrement, des distractions de toutes sortes sportives et culturelles. Les stations françaises ont fait, à cet égard, un gros effort, qui contribue pour une bonne part au succès de la crénotherapie. Des études systématiques sur le comportement des enfants et leur mode de vie pendant la cure permettent progressivement des améliorations importantes. Le problème scolaire qui a été envisagé récemment me paraît d’un intérêt secondaire étant donné la brièveté relative des cures. Sans être négligé, il peut se limiter à quelques leçons d’entretien qui ne tiendraient dans la journée des enfants qu’une place limitée. Cette organisation paraît naturellement plus facile à réaliser dans des établissements collectifs qu’un cure libre. Il faut insister sur deux points importants en fin de cure :

— Un traitement systématique peut être nécessaire pour faciliter le retour de l’enfant dans son milieu habituel. Ceci est surtout vrai pour les enfants asthmatiques comme il est d’ailleurs de règle de l’envisager au retour d’un séjour climatique de plus longue durée.

— Un compte rendu au médecin habituel de l’enfant, pédiatre ou généraliste, de son comportement pendant la cure avec éventuellement quelques suggestions thérapeutiques.
BÉNÉFICES ESCOMPTÉS

Les avantages des cures thermales sont à l'évidence sur-
tout socio-économiques : réduction ultérieure des épisodes
pathologiques et de leurs conséquences à moyen terme qui
portent sur une réduction des soins médicaux au long de
l'année, de la consommation de médicaments et de l'absen-
téisme scolaire. Les conséquences à long terme d'une meille-
ure santé pendant l'enfance sont plus difficiles à chiffrer
mais faciles à imaginer : meilleure scolarité, meilleure inser-
tion sociale ultérieure, meilleur équilibre psycho-affectif peut
être pour le restant de l'existence. Ces bénéfices peuvent être
mis en évidence par des enquêtes faites à partir de la clien-
tèle des stations ou des fichiers de la Sécurité Sociale. Par
contre, les avantages scientifiques, physiopathologiques de
la crénothérapie sont plus difficiles à démontrer. Pourtant il
semble que nous disposions maintenant d'informations et de
moyens qui permettent de progresser dans ces domaines.

AMBITIONS DU CETTE

L'objectif de cette association est double.

— Susciter des travaux capables d'expliquer et de justi-
fier le mode d'action des eaux thermales. Les études cytolo-
giques et immunologiques déjà réalisées montrent la voie :
elles doivent être poursuivies aussi bien expérimentalement
chez l'animal que cliniquement chez l'être humain. Les
enquêtes seulement statistiques ou économiques effectuées
périodiquement pour justifier les cures thermales ne suffisent
pas à entraîner la conviction des médecins. Des tests précis
reposant sur la cytologie, l'étude des sécrétions, l'immuno-
logie et les explorations fonctionnelles devraient permettre
de progresser dans ces domaines. Les résultats sont liés à la
qualité des services universitaires qui consacrent leur activité
à l'hydrologie et à la climatologie à la fois pour une meilleure
formation des médecins et pour la recherche médicale.

— Mieux faire connaître aux pédiatres et aux généra-
listes les stations thermales françaises à vocation pédiatique,
leurs indications, leurs méthodes de traitement, les travaux
qui y sont menés et aussi les particularités de leur région.
Cette information nécessaire qu'une place convenable soit
donnée dans les Facultés à l'enseignement du thermalisme,
que des réunions périodiques soient organisées et que les
médecins et les enseignants intéressés par cette discipline
obtiennent qu'une place leur soit plus souvent réservée dans
les congrès et dans la presse médicale.

Ce double effort de recherche et d'information ne peut
se faire sans un support financier solide qui devrait être as-
suré par l'ensemble des stations pédiatriques. Le CETTE y
contribue dans la mesure de ses moyens.

Rééducation fonctionnelle en milieu marin

Film

B.F. BADELON *, P. MOISSON, F. CHAUVEL, P. LAURENT
(Grandville)

Ce film présente, au travers de l'exemple d'une jeune
femme ayant une entorse grave du genou opérée et de lom-
balgies, les différentes techniques de rééducation et d'hydro-
thérapie marine.

Le rôle du climat marin est mis en évidence et l'apport
oligo-élémentaire, dans le cadre de l'ionisation électro-négä-
tive naturelle de l'atmosphère, fait partie intégrante du tra-
tement ; en effet, l'accent est mis sur la nécessité de la
remise en condition du terrain d'un individu qui a été poly-
traumatisé.

† Bande VHS, couleur, 15 minutes.
* « Le Normandy », 50406 GRANDVILLE.

On verra décrites les techniques d'hydromassages, de
douches à jet, de douches à affusion ainsi que les applica-
tions de boues marines.

On y découvrira la piscine de rééducation avec sa piste de
verticalisation. Seront présents également des soins spécifí-
ques en piscine tels que les tractations de hanches et tractons
lombaires.

On pourra remarquer également des postes de humage
deau d'eau de mer ainsi que la présence de boues thermales pour
le traitement particulier des mains.

Ce petit documentaire sans prétention cinématographique
s'est fixé la mission d'informer sur le fonctionnement d'un
centre de rééducation fonctionnelle en milieu marin.
Prévision des recrudesences d’infarctus du myocarde, fondée sur une analyse météorologique multivariée

J.C. COHEN 1, G. der MEGREDITCHIAN 1, N. GERBIER 1,
E. CHOISNEL 1, D. PEZZI-GIRAUD 2, J. PASTEYER 2,
M. POISVERT 3, F. BESANÇON 4
(Paris)

Dans une publication antérieure [1], nous avons relaté les circonstances météorologiques des infarctus du myocarde, des attaques vasculaires cérébrales, et des tentatives de suicide. Ces données résultaient d’une confrontation entre les cahiers du SAMU des Hauts-de-Seine, et les fichiers informatiques de la Météorologie Nationale, au Bourget. Au cours de cette première étape, l’analyse était de type univariée, c’est-à-dire que les variables météorologiques étaient considérées chacune à son tour, analysées quantitativement, et confrontées aux occurrences cliniques. Les résultats nous avaient surpris, en ce que les recrudesences d’infarctus avaient paru peu liées aux changements du temps, exprimés par les variations maximales en 3 heures. Nous avions seulement pu conclure que les infarctus étaient plus fréquents pendant les tempêtes, et par ailleurs d’été, et par ciel gris.

Le présent travail, qui repose sur l’analyse multivariée, corrige l’analyse univariée antérieure, et ses résultats s’expriment en termes de prévisions.

TECHNIQUES

Deux mille sept cent dix cas d’infarctus du myocarde ont été datés en 1975, 1976 et 1977, soit une période de 1 096 jours, grâce aux SAMU des Hauts-de-Seine à Garches, et de Paris-Necker [9]. Toutefois, on a exclu, non sans motif, les périodes de fêtes de fin d’année. Sous le nom d’infarctus du myocarde, on a retenu les infarctus typiques et les syndromes de menace qui réunissaient une douleur angineuse prolongée, rebelle à la trinitrine, et des signes électriques d’ischémie-lésion.

L’analyse multivariée a été menée par Jean-Claude Cohen, dans sa thèse d’ingénieur des Travaux de la Météorologie, sous la direction de Guy der Megreditchian, statisticien à l’EERM, et de MM. Gerbier et Choisnel, de la Division de Climatologie.

Sa première phase a consisté en une « sélection progressive ascendante », basée sur le calcul de la distance de Mahalanobis, en vu de faire émerger le meilleur groupe de prédicteurs de l’incidence des infarctus. La seconde phase a été une « discrimination canonique linéaire », qui a combiné les meilleurs prédicteurs en un indice composite, dont la qualité informative a été évaluée notamment en termes de réussite des prévisions.

L’événement à prédire était, pour chaque journée : l’incidence des infarctus atteignait-elle ou non au moins le double de l’incidence moyenne ? La première éventualité s’est réalisée un jour sur sept, d’après les fichiers fournis par le SAMU.

Dans la première étude, univariée, nous n’avions considéré que 11 prédicteurs. Dans la seconde, multivariée, il a été tenu compte de 150 prédicteurs.

Un premier groupe de prédicteurs a consisté en variables météorologiques relevées au voisinage du sol, exprimées sous diverses formes. La température a été exprimée sous 24 formes : en valeurs absolues, relevées de 3 à 9 heures ; en valeur minimale, maximale, et moyenne quotidienne ; en variations maximales en trois heures, en amplitude diurne, et en variations par rapport à la veille ; en écart à 19° ou à 33°, toutes les 3 heures et aux heures de jour ; en moyenne depuis 5 et 10 jours ; en écart de la moyenne à la moyenne décadique établie sur 25 ans. Le vent a été exprimé sous 28 formes : en direction et en force 3 fois par jour ; en combinaison avec la température, dans l’indice de stress thermique, exprimé dans sa moyenne ou ses valeurs toutes les six heures. On a considéré la pression atmosphérique toutes les 12 heures ou en moyenne, et ses variations maximales en 3 heures. L’insolation a été exprimée en durée et en fraction du jour. On a noté, par période de 24 heures, la nébulosité et la tension de vaporess moyenne ; les précipitations, en hauteur et en durée ; l’humidité minimale et maximale ; le point de rosée toutes les 3 heures et ses variations maximales en 3 heures ; l’indice de sécheresse de l’air par rapport au climat moyen du Bourget ; la température pseudo-adiabatique potentielle du thermomètre mouillé, toutes les 12 heures, ainsi que ses variations en 12 heures.

Un second groupe de prédicteurs a été élaboré à partir des mesures en altitude. La même température du thermomètre mouillé a été calculée à 500 m, 1 000 m et 1 500 m toutes les 12 heures, ainsi que sa variation en 12 heures ; la hauteur d’eau condensable, par tranches de 500 m jusqu’à 3 000 m à mi-décembre, ainsi que ses variations de 0 à 3 h. (en temps universel, TU) ; les indices d’humidité à 500 m toutes les 12 heures ; l’indice de stabilité de l’air sur quatre couches d’atmosphère ; les indices d’inversion entre 0 et 500 m, et entre 500 m et 1 000 m, durant le jour.

Les deux principaux polluants atmosphériques, c’est-à-dire les fumées noires et les acidités fortes, ont été exprimées en concentrations moyennes quotidiennes, extraites de la banque de données du Ministère de l’Environnement.

1. Météorologie Nationale, 2, avenue Rapp, 75007 PARIS.
2. SAMU des Hauts-de-Seine, Hôpital Raymond-Poincaré, 92280 GARCHES.
3. SAMU de Paris, Hôpital Necker, 149, rue de Sèvres, 75730 PARIS cedex 15.

Presses thermale et climatique, 1988, 125, n° 5.
On a considéré des prédicteurs non météorologiques : le jour de la semaine, la saison, l’activité solaire (en nombre de Wolf).

On a tenu compte du nombre des infarctus survenus les jours précédant le jour J. S’il y en a eu beaucoup, on peut imaginer que les sujets au bord de l’infarctus se sont raréfiés le jour J. Cette démarche s’appelle l’étude du passé du prédicteur, le prédicteur étant la variable à prédire, c’est-à-dire l’incidence des infarctus.

Enfin, laissant de côté les colonnes de chiffres, nous avons examiné les cartes quotidiennes des situations météorologiques en France. Leurs confrontations avec les cahiers du SAMU nous ont amené à individualiser 10 types de temps, et à classer chaque journée dans l’une de ces 10 catégories. Ces types de temps seront présentés en détail plus bas, à propos des résultats.

Pour les statistiques, il a fallu opérer simultanément sur des données quantitatives et qualitatives, ce qui a conduit Guy de Megreditchian (Météorologie Nationale, EERM/STAT/MATH) à établir un procédé original de codage des données qualitatives, comme la direction du vent, le jour de la semaine, ou le type de temps : le "codage optimal". A chaque classe du prédicteur qualitatif considéré, on affecte un coefficient numérique optimal au sens de la discrimination linéaire.

Les ordinateurs de la Météorologie ont été poussés loin. Comme ils comptent parmi les plus gros, ce travail d’informatique médicale compte probablement parmi les plus lourds à ce jour.

RÉSULTATS

Le plus difficile est peut-être de rendre compte des résultats, si l’on ne veut pas trahir l’esprit de l’analyse multivariée, qui consiste à manier la conjonction des prédicteurs. Si on les envisage à tour de rôle, on retombe dans l’analyse univariée. La solution correcte est de calculer des indices composés, dits indices de confort, qui se trouvent dans la thèse d’ingénieur de J.C.I. Cohen [6]. Avec ces indices, le pourcentage de prévisions réussies a atteint 78,7 p. cent. Rappelons qu’il s’agissait d’une discrimination bimodale : l’incidence des infarctus atteignait-elle ou non au moins le double de l’incidence moyenne ?

Les meilleures familles de prédicteurs sont celles qui ont fourni plus de 60 p. cent de prévisions réussies, d’après la discrimination canonique linéaire. Par ordre d’efficacité décroissante, ce sont :

— les types de temps, sur lesquels on reviendra ;
— le vent, notamment sa force à 18 heures ;

— Ensuite, vient la température, exprimée de 24 manières, la meilleure étant l’écart à la moyenne des 10 jours précédents.
— Enfin, les données barométriques, les relevés en altitude, les polluants, les précipitations, et l’humidité. Les polluants ont été parmi les meilleurs prédicteurs, mais ils pouvaient n’être qu’un reflet des mouvements atmosphériques.

En vue d’évaluer le délai de latence, l’ordinateur a été prié de choisir les données, c’est-à-dire qu’on a confronté la situation météorologique du jour J avec les infarctus non pas du jour J, mais des J + 1 et J + 2. La valeur prédicte des meilleurs prédicteurs s’est alors effondrée, sauf naturellement la saison, et le passé du prédicteur. Si les conditions météorologiques favorisent l’infarctus, leur influence se fait sentir dans un délai inférieur à 24 heures, d’après le calcul.

Ainsi, le meilleur prédicteur, et de loin a été le type du temps, apprécié par le météorologiste à l’inspection des cartes. Parmi les 10 types que nous avons individualisés, cinq sont néfastes aux coronariens. Tous sont des changements du temps.

Les cinq autres types de temps ne s’accompagnent pas de recrudescences d’infarctus. En premier lieu, les situations anticycloniques se maintenant depuis 36 heures ou davantage ; puis les situations non anticycloniques se maintenant de même, sans aggravation, même s’il pleut ; les passages en courants anticycloniques non perturbés de secteur Ouest ; les passages en courant faiblement instable ou en traineau peu active à l’arrière d’un front froid ; enfin, les passages en courant instable ou en traine active, avec orages ou averses, n’entrant pas dans une autre classe. Les nuances de la description, et des exemples de cartes, figurent dans la thèse de J. Cl. Cohen, p. 112 et annexe III [6].

Ainsi, la simple inspection des cartes météorologiques est-elle très efficace.

DISCUSSION

Nos résultats antérieurs d’analyse univariée ne sont pas contredits, mais largement corrigés. Nous avions remarqué les recrudescences d’infarctus par temps froid : en toutes saisons, en automne et en hiver ; par temps gras, en toutes saisons ; et lors des broulards d’automne. Malgré un effectif de 1 966 infarctus, le seuil de signification statistique n’était pas atteint lors des fortes chutes barométriques, des sécheresses, ni des hausses importantes du point de rosée, correspondant au passage des fronts chauds. Il fallait tenir compte de la conjonction des facteurs météorologiques, à l’aide des méthodes multivariées. Ainsi est-il établi que les recrudescences d’infarctus surviennent quand le temps change rapidement, en accord avec l’intuition commune, comme avec les observations, sous d’autres climats, de Brezowsky, de Coget, de Heyer, de Maschas et Chiliaiditis [2, 5, 11, 12]. Dans l’interprétation, une réserve s’impose. L’infarctus ou le syndrome de menace ont une physiopathologie complexe. Les facteurs météorologiques ne peuvent revendiquer qu’un effet adjuvant, et inégal suivant le degré auquel les individus leur sont exposés.

Ce travail n’est pas la première analyse multivariée.

Dans la définition des types du temps basée sur l’inspection des cartes météorologiques, nous avons été précédés par l’école allemande, depuis 1953, avec Daubert, Ungeheuer, Brezowsky [3, 7, 8, 14, 15]. Cette méthode simple est efficace malgré ses inconvénients : qualitative, elle ne discerne pas les phénomènes intenses et rares. La classification des situations météorologiques en 10 catégories, mise au point ici sous la direction de N. Gerbier, diffère néanmoins de celle de Brezowsky en ce que le climat de Paris diffère de celui de Munich, et en ce qu’elle a été mise au point et validée spécifiquement pour la prévision des infarctus du myocarde. Les types de temps de l’une et de l’autre ne sont pas les mêmes, et nous mettons davantage l’accent sur les changements de temps.

En conclusion, on ne pouvait pas se dispenser de cette immense analyse statistique multivariée, pour montrer la qualité d’une méthode relativement simple.

Ce qu’on a appelé « prévision » dans ce travail était en réalité une statistique rétrospective. Il reste à tester prospectivement les méthodes proposées, parce que les prévisions météorologiques à échéance de 24, 36 ou 48 heures, appliquées à des mailles territoriales d’environ 200 × 200 km, sont affectées d’une part d’incertitude [14].

Les applications pratiques ont été discutées dans notre publication antérieure [1]. Elles pourraient concerner les SAMU, les hôpitaux, les médecins et chirurgiens. Des prévisions de recrudescences d’infarctus seraient susceptibles d’être transmises un jour ou deux avant le moment où ils surviennent. Les considérations de ces informations aux organismes médicaux, au fin de les prévenir. Les chirurgiens et aux anesthésistes. Par suite, nous croyons également préjudiciable d’informer les coronaroses, par les médias, des jours où la situation météorologique prévue n’augmente pas le risque d’infarctus.

RÉSUMÉ

Dans un travail antérieur, les circonstances météorologiques des infarctus du myocarde, des attaques vasculaires cérébrales, et des tentatives de suicide ont été étudiées par une méthode univarée. Le présent travail a utilisé les mêmes observations du Service des Urgences (SAMU), de 1975 à 1977, dans la région de Paris, mais par une méthode multivariée. On a comparé 150 prédicteurs potentiels, par « sélection progressive ascendante ». Les meilleurs d’entre eux ont été combinés par « discrimination canonique linéaire » en un indice composite, lui-même évalué en terme de pourcentage de prévisions réussies. Ces 150 prédicteurs étaient : 1) des variables météorologiques relevées au-dessus du sol comme la température, l’humidité et l’humidité relative, le vent et la pression atmosphérique ; 2) des variables météorologiques relevées à partir du relevé d’altitude ; 3) des variables météorologiques relevées à partir du relevé d’altitude ; 4) des variables météorologiques relevées à partir du relevé d’altitude ; 5) des variables météorologiques relevées à partir du relevé d’altitude ; 6) des variables météorologiques relevées à partir du relevé d’altitude ; 7) des variables météorologiques relevées à partir du relevé d’altitude ; 8) des variables météorologiques relevées à partir du relevé d’altitude ; 9) des variables météorologiques relevées à partir du relevé d’altitude ; 10) des variables météorologiques relevées à partir du relevé d’altitude.

REFERENCES

La thérapie climatique aujourd'hui *

Résumé

A. SCHUH **
(Munich)

La thérapie climatique connut une époque de prospérité pour le traitement de la tuberculose. Ensuite elle tomba dans l'oubli mais depuis peu la discussion a repris et on constate une évolution vers une application et une recherche accrues de procédés thérapeutiques par le climat.

En pratique cependant, la thérapie climatique n'est appliquée que très rarement. Notre étude, à ce sujet, veut y apporter une modification. Au cours des dernières années, nous avons développé une thérapie consistant en une composition d'entraînement et d'endurcissement au cours d'une cure de randonnées.

En ce but, nous avons développé un système pour le dosage d'influences thermiques pendant la cure. Ce système est la combinaison de valeurs métaboliques, météorologiques et personnelles. Au cours de son application, le médecin détermine la capacité d'endurance physique du patient, au moyen de tests électrocardiographiques. Après en avoir pris connaissance, il fixe les distances à parcourir, ainsi que le rythme de la marche, ce qui doit conduire à un entraînement et non à un surmenage.

De plus, on incite à un endurcissement prudent contre le froid avec lequel le patient doit subjectivement toujours ressentir une sensation de fraîcheur. C'est pourquoi on introduit le bulletin météorologique quotidien dans le schéma de dosage, avant chaque randonnée. Ensuite, on choisit les vêtements avec lesquels le trajet doit être parcouru. Avec les valeurs personnelles, météorologiques et spécifiques du parcours, on fait entrer la sensation thermique désirée, convertie en chiffres, dans le système de prévisions et l'on obtient ainsi les valeurs d'isolement vestimentaire dont on a besoin, ce qui rend un dosage possible sous influence climatique.

En comparant fréquence cardiaque et valeurs d'acide lactique, ainsi que la transformation de paramètres subjectifs, nous avons vérifié le succès de la cure. Nous avons pu trouver des effets positifs dans toutes les données. On constate une réaction d'entraînement et une accoutumance au froid.

A l'heure actuelle une thérapie climatique accrue doit être réappliquée. En ce but, nous avons développé un plan de dosage qui permet une thérapie à la fois sous forme d'entraînement physique et d'endurcissement. Le succès a été confirmé et les résultats en sont prouvables.

Aspects psychologiques et psychothérapeutiques de l'hydrothérapie

J.P. KAHN *
(Toul)

FONCTIONS THÉRAPEUTIQUE, RELIGIEUSE ET SOCIALE DU THERMALISME

L'usage de l'eau sous ses différentes formes (immersion, bains, douches, étuves...) dans le traitement des Désordres de l'Esprit remonte à la plus haute Antiquité et, historique-

* Assistant des Hôpitaux, Service de Psychologie Médicale, C.H.U. de Nancy, hôpital Jeanne d'Arc, B.P. 303, 54201 TOUL Cedex.

Pressée thermale et climatique, 1980, 125, n° 5.
L’aspect à la fois médical et religieux de l’hydrothérapie est particulièrement bien représenté par les pêlerinages thérapeutiques qu’on retrouve sous diverses formes aussi bien en Orient qu’en Occident. Dans toute l’Europe médiévale, des pêlerinages draînent malades, indigents, fous et hommes de foi vers des sources et des rivières miraculeuses et en France, le pêlerinage à Lourdes, dans les Pyrénées, reste encore une véritable institution sociale qui réunit, chaque année, plus d’un million de personnes. Sur un autre plan, nous voudrions juste mentionner l’extraordinaire développement qu’avait pris sous l’Empire romain le phénomène hydrothermal, pour rappeler cette autre dimension fondamentale du thermalisme qu’est sa fonction sociale et de loisirs.

SYMBOLISME DE L’EAU

Il ne fait pas de doute que cet attrait universel pour l’eau et ses vertus thérapeutiques repose au moins en partie sur l’extraordinaire richesse symbolique de l’eau et des représentations imaginaires qui s’y rattachent. Celles-ci ont été superbement décrites et analysées par Gaston Bachelard dans son livre *L’eau et les rêves*. Si je tiens à mentionner cet aspect c’est parce qu’il me semble que, indépendamment des multiples aspects thérapeutiques spécifiquement liés aux propriétés physiques (pression, température) et chimiques des eaux et qui ont fait l’objet des travaux remarquables exposés tout au long de ces journées, le *vécu psychologique* de la relation de l’Homme avec l’eau sous-tend probablement certaines des actions les plus puissamment thérapeutiques de l’hydrothérapie et de la balnéothérapie. Il n’est pas possible de parler rapidement du symbolisme de l’eau car les mots ne peuvent jamais exprimer tout le contenu du symbolisme. Définir un symbole serait l’emprisonner dans une signification particulière et du coup, en limiter la portée et le détruire dans ce qu’il a de général dans un contexte donné. (Un symbole ne *fait sens* en effet, qu’en fonction de la personne qui le conçoit et en fonction d’autres symboles auxquels il est associé au sein de chaînes signifiantes, dans un même ensemble symbolique). Mais dans notre héritage et notre contexte culturels, l’eau est un *signifiant* qui évoque de puissantes résonnances affectives inconscientes : elle est une sorte de limite, de frontière naturelle entre la vie et la mort : et dans les Evangelies, l’Eau Vive désigne l’Esprit Sain.

Les thèmes de la purification et de la régénération sont aussi omniprésents et illustrés aussi bien par le récit biblique du Déluge que par celui de la légendaire Fontaine de Jouvence qui permet le retour à la jeunesse et renvoie au thème de l’immortalité. On pourrait développer aussi longuement les thèmes symboliques que sont ceux de la naissance ou de la Renaissance (Baptême) et de la fertilité. Mais ce qui paraît plus important est de souligner le caractère ambivalent et polysémique du symbolisme de l’eau : Certains thèmes et attributs qui s’y rattachent : la naissance, la fertilité, la douceur, la limpideté renvoient à des représentations féminines, maternelles de l’eau alors qu’au contraire, certaines images comme sa force, sa puissance énergétique, sa violence destructive la rattachent à des représentations masculines. Comme le soulignait Bachelard, l’eau est un être total et son rôle est souvent ambigü et multiple. *« Toutes les valeurs de la bienfaisance et de la malaisance s’croisent indifféremment en elle »,* dit le philosophe Michel Foucault qui poursuit : *« Elle est le lieu de tous les thèmes thérapeutiques possibles, formant une inépuisable réserve de métaphores opératoires ».*

PLACE DE L’HYDROTHERAPIE EN MEDECINE

J’espère que vous me pardonnerez, Messieurs et Mesdames, ce long préambule philosophique et littéraire. Mais, à une époque où prévalent en médecine le raisonnement scientifique et le discours rationnel et où, pour beaucoup de nos collègues, l’hydrologie et le thermalisme apparaissent comme empiriques et désuets, je voudrais développer ici quelques considérations qui soulignent l’importance de ce type d’approche dans la Médicine contemporaine.

Ce serait un cliché que de dire que la Médicine actuelle a considérablement changé par rapport à ce qu’elle était il y a encore 20 ans et qu’elle privilégie les aspects technologiques et scientifiques sur les aspects humains et relationnels. Mais, si le médecin a pour but de guérir, il a surtout pour fonction de soigner.

L’évolution récente de la médecine a plusieurs conséquences : en premier lieu son statut social et son image se sont modifiés à la fois pour les patients et le grand public et pour les médecins eux-mêmes. Ensuite, la relation médecin-malade s’est considérablement modifiée. La médecine s’est morcelée en spécialités, si bien que, dans les hôpitaux, les médecins ont de plus en plus de mal à avoir une image d’ensemble du patient qu’ils soignent, et que la médecine devient une médecine des fonctions ou une médecine d’organe au détriment d’une médecine de la personne, du sujet. En médecine praticienne de ville, la surcharge des cabinets médicaux est telle que le médecin n’a plus le temps d’établir entre lui et son patient une véritable relation interpersonnelle. Einfin le dernier aspect évolutif que je mentionnerai est celui de l’augmentation du nombre des maladies chroniques et de l’émergence de ce qu’on appelle maintenant les maladies de civilisation, liées aux stress de la vie moderne.

Plus de la moitié des quelque 600 000 patients qui bénéficient chaque année en France d’une prise en charge thermale souffrent d’affections ou de symptômes chroniques et récidivants, rebelles aux chimiothérapies. Il ne m’est malheureusement pas possible de développer ici les importantes conséquences et réactions psychologiques survenant au cours des maladies chroniques, ni d’analyser leur impact sur les relations soignant-soigné et le potentiel d’évolution clinique de la maladie.

Je voudrais en venir maintenant à ce qui fait, dans ce contexte, l’originalité du thermalisme et de l’hydrothérapie. Un premier point que je voudrais développer est le potentiel de changement et de rupture qu’elle représente dans l’évolution d’une maladie chronique : bien souvent, la demande de départ en cure thermale survient dans un contexte de désespoir, d’anxiété et de tension : le patient a souvent traversé une période aiguë de sa maladie avec ce que cela signifie d’inquiétude, d’examens ou de traitements parfois douloureux et peu efficaces : le patient et son entourage perdent patience, courage et espoir, ce qui ne va pas sans tension dans les relations familiales et avec le corps médical. De plus, le patient est humilié et dévalorisé dans l’image qu’il se fait de lui-même. C’est dire qu’une demande de cure thermale est bien souvent un changement souhaité par le patient et par son entourage, à un moment où, précisément, la situation est dans une impasse du point de vue thérapeutique. Encore faut-il que le séjour en cure permette au sujet d’exploiter à son profit la disposition au changement dans laquelle il se trouve au moment du départ et qu’elle puisse devenir un « espace thérapeutique transitionnel », pour reprendre l’expression de Michael Balint.

Presse thermale et climatique, 1988, 125, n° 5.
Le deuxième point est celui qui fait de l'hydrothérapie une médecine douce : le séjour en station thermoclimatique s'oppose du tout au tout, par son image de marque, à la lourdeur de la médecine hospitalière, où le patient ne peut échapper à son statut de malade : en station thermale, le sujet - on ose à peine dire le malade - conserve ou retrouve l'apparence d'être un bien portant, libre de ses mouvements et de son autonomie. L'environnement médical, s'il est présent reste cependant discret et le patient, debout, est rétabli dans sa dimension d'Homme. Il est important de dire combien le fait d'être debout, habillé et mobile, plutôt que couché dans un lit d'hôpital peut modifier les attitudes vis-à-vis de la maladie et des médecins et contribuer à permettre au sujet de s'affranchir de sa dépendance et de sa passivité. L'organisation de la station sur le mode d'une ville, avec son cœur (« la Source »), ses bâtiments publics, lieux de rencontres, commerciaux et de loisirs permettent à la fois au curiste de jouir d'une certaine symbiose avec l'environnement et des avantages d'une vie relationnelle et sociale.

Le troisième point est celui qui fait du thermalisme une médecine naturelle. C'est bien sûr ici qu'interviennent les nombreuses représentations imaginaires et le symbolisme de l'eau que nous avons évoqués précédemment. L'eau, qu'elle soit bue et imprègne l'organisme par l'intérieur, ou qu'elle soit utilisée sous forme de bains et de douches, réconcilie souvent l'Homme avec son corps qui redevient pour lui une source de plaisir.

Tout, dans le cadre naturel des stations thermoclimatiques favorise ainsi un changement allant dans le sens d'un rétablissement de l'homéostasie physique et psychique.

Enfin, le dernier point que je voudrais développer est celui de la relation du curiste au médecin, qui fait de cette forme de pratique, une médecine lente.

Michael Balint a bien montré comment « le médecin se prescrit lui-même » et comment il est en fait son premier médicament. Dans le cas du thermalisme, plusieurs raisons contribuent à faciliter un rééquilibrage de la relation du médecin et du malade : tout d'abord, le fait que le patient n'adopte pas, en cure, le statut et le comportement d'un malade, ce qui réduit sa dépendance et sa répression ; ensuite le fait que l'eau constitue un médiateur dans la relation thérapeutique, qui réduit la toute puissance du médecin par rapport au malade. En effet, des trois termes de la relation malade-médecin-eau, c'est cette dernière qui est le plus puissante, auquel les deux autres sont assujettis. Ceci devrait être l'occasion idéale pour réaliser une médecine lente où le médecin peut témoigner d'une écoute disponible et empathique vis-à-vis d'un homme à part entière, tout en prenant en compte le patient avec ses problèmes corporels spécifiques.

CONCLUSION : UNE ALTERNATIVE À L'HOSPITALISME

Tout comme les hôpitaux, un grand nombre de stations thermales se sont dotées d'équipements modernes et souvent sophistiqués, et il est légitime qu'elles mettent en avant leur compétence technique dans tel ou tel domaine spécialisé. Pour conclure, je dirai que la médecine thermale a actuellement et à l'époque où l'on parle d'alternatives à l'hospitalisation, une opportunité unique de reconquérir la place prééminente qui a été la sienne dans le passé (parmi les méthodes de prises en charge psychothérapeutique) en aidant à concilier - ou à reconstruire - les aspects technologiques et scientifiques de la médecine moderne avec sa vocation traditionnelle humaniste.

Je souhaite que l'hydrologie continue à accepter d'être non pas une médecine du symptôme mais une médecine de l'Homme, ce qui fera d'elle une véritable hydrothérapie, capable de ramener la médecine à ses sources : celles où le malade est avant tout un homme malade et où le médecin le traite comme tel.

REFERENCES
Séance de clôture

Métabolisme cellulaire et crénotherapie

P. MAGNIN *

(Besançon)

Le métabolisme cellulaire s'impose à toute réflexion, comme à toute démarche d'ordre physiologique, clinique ou thérapeutique.

La crénotherapie, pour sa part, ne saurait mieux fonder son action ou ses effets qu'en y faisant référence. Evocer ce niveau opératoire mérite un peu d'attention dans la mesure où justement, les activités biochimiques qui se déroulent dans chaque cellule ressortissent à une situation inédite par ailleurs phénoménale et singulière qui est la vie.

La vie, il n'est jamais superflu de le redire, est un défi permanent aux lois physico-chimiques, qui, en fonction du deuxième principe de la thermo-dynamique, veulent que tout événement naturel évolue vers le désordre et la dispersion.

Or, durant la plus grande période existentielle de la cellule, le phénomène vital induit des actions physico-chimiques qui vont à l’encontre de cette règle immanente en introduisant les deux concepts qui conditionnent toute vie cellulaire.

Celui du Temps Constructeur et celui de la permanence d'un état d'équilibre dynamique dans un ensemble évolutif en transformation adaptative continue.

Le Temps Constructeur assure la croissance des êtres vivants par l'effet fondamental de ce qu'il est convenu d'appeler une entropie négative. Cette entropie négative résulte d'un concept d'état d'équilibre oxydo-réducteur qui est cette autre facette de l'homéostasie du milieu intérieur de Claude Bernard qui recouvre le principe de permanence de l'état d'équilibre dynamique.

En effet, selon la théorie des structures dissipatives d'Ilya Prigogine, qui valut à son auteur le Prix Nobel de Chimie en 1977, tout système vivant doit être considéré non plus comme un système isolé thermodynamiquement, mais « comme un système ouvert en état stationnaire de non équilibre ». L'homéostasie oxydo-réductrice répond parfaitement à cette définition et inscrit l'état Redox comme la plate-forme d'élaboration du temps constructeur de la matière vivante.

Voilà pourquoi il n'est pas faux de considérer l'eau, milieu porteur de facteurs d'induction oxydo-réducteurs, comme le vecteur thérapeutique du milieu intérieur et de l'état Redox de nos tissus.

Et pour interpréter mieux son importance et son rôle, ce sont ces phénomènes fondamentaux eux-mêmes, qui nous en donnent la mesure.

LE CONCEPT D'ÉQUILIBRE REDOX ET LA RESPIRATION TISSULAIRE OU FERMENTATION HYDRIQUE DES CELLULES

Processus normal

Nous dirons tout d'abord que le terme d'équilibre Redox est une expression approchée de la réalité qui recouvre une large inexactitude.

En raison de ce que nous venons de préciser, il ne peut exister d'équilibre Redox stricto sensu à l'état vivant dynamique. Cette situation représente en fait une variation de potentiel d'énergie oscillant dans un état d'oxydo-réduction...

La meilleure dénomination serait de parler du potentiel de l'état Redox. Ce sera donc dans un souci de simplification que nous entendrons parler du potentiel Redox ou d'équilibre Redox.

Evoqué par analogie avec l'équilibre acido-basique, il permet d'aborder rationnellement l'étude des variations et des désordres du métabolisme oxydo-réducteur cellulaire à partir d'un postulat de normalité qui s'appliquerait aux valeurs caractéristiques de ce métabolisme.

Ce métabolisme traduit les phénomènes chimiques et respiratoires de la cellule et se développe par échanges du milieu intérieur à la mitochondrie. L'état respiratoire de ce fait détermine l'état chimique et énergétique cellulaire qui oscillera entre des niveaux d'hyper-oxydation et d'hyper-

* Professeur à la Faculté de Médecine de Besançon ; Chef de Service ; Doyen Honoraire.
réduction autour d’un rapport conditionnant la quantité d’oxygène nécessaire à la transformation en énergie des molécules dont l’ATP représente le terme. Ce rapport est bien connu. Il a pour valeur 3 au niveau mitochondrial et permet de définir selon Shapiro des situations de normalité respiratoire, « d’oxydase » respiratoire ou métabolique, de « réductase » métabolique ou respiratoire dans la mesure où la valeur du potentiel redox peut être liée au pH intracellulaire ou à la pression partielle d’O₂.

Ces processus normaux sont résumés et explicités par le tableau de la chaîne respiratoire mitochondriale qui permet de bien comprendre l’origine métabolique ou respiratoire des désordres cellulaires qui font le lit de toutes les pathologies (fig. 1).

Dans cette chaîne respiratoire mitochondriale, interviennent outre les cytochromes, des enzymes spécifiques. Ces derniers sont activés par des cations intervenant comme inducteurs, des transporteurs d’hydrogène liés à ces enzymes spécifiques, à savoir le NAD, le NADP, le FAD, selon le niveau énergétique de libération de cet hydrogène à partir des flux métaboliques (cycle citrique par exemple).

Les acides du cycle : citrique, isocitrique, oxalosuccinique, succinique, fumaire, malique et oxaloacétique ne sont pas oxydés directement mais après cession de CO₂ d’hydrogène puis d’électrons par la fermentation hydrique mitochondriale.

A ce niveau, le transport d’électrons est catalyposé par la cytochrome C oxydase, cuproenzyme ayant le même groupement prosthétique que celui du cytochrome a et a3. Le potentiel Redox de la cytochrome C oxydase étant très élevé, elle se trouve pouvoir être directement oxydable par l’oxygène moléculaire pour donner l’oxygène ionisé.

Mais il est absolument indispensable qu’aucun enjambement énergétique ne se soit produit dans l’acheminement électronique sous peine de rupture de tension et de non accomplissement du processus respiratoire.

Or, la valeur fonctionnelle des transporteurs d’hydrogène ou d’électrons comme celle des cytochromes est directement résultante de la présence de leurs inducteurs métauxiques (tableau I).

Viciation du processus normal

Nous comprenons mieux grâce à cette représentation que l’état d’hypoxie soit le reflet évident d’une « réductase respiratoire » par non épuisement possible du stock de protons en raison de la raresfaction de l’oxygène acheminé ou activé dans la cellule.

De la même manière, une hyperoxie conduirait à une « oxydase respiratoire », tandis qu’une « oxydase métabolique » serait réalisée par la diminution des éléments réducteurs intracellulaires ou la déficience enzymatique de leur production.

La formation d’oxydants par la cellule elle-même aux diverses phases du déroulement métabolique produirait, comme leur administration, une « réductase métabolique ».

Les meilleurs critères d’appréciation de cet état de fait reposent sur les mesures physiques ou chimiques des rapports ATP/oxygène ; NADH/NAD ; NADPH/NADP ; GSH/GSSG que ce soit dans la mitochondrie ou le cytoplasme en sachant que ces valeurs calculées ou mesurées sont fonction des conditions d’oxygénation tissulaire.

Ainsi, l’exercice d’effort physique conduit à une chute du potentiel Redox dans les muscles et même le sang, matérialisée dans une certaine mesure par l’adaptation des paramètres respiratoires et l’émergence de substrats spécifiques du catabolisme, tels que l’acide lactique. On observe des
TABLEAU I. — Teneurs en métal des principales métalloprotéines (y compris les métalloenzymes).

<table>
<thead>
<tr>
<th>Protéine</th>
<th>N° d'ordre</th>
<th>Source</th>
<th>M (µg/g)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Ferro-protéines</td>
<td>Catalase</td>
<td>1.11.1.6</td>
<td>Foie de cheval</td>
</tr>
<tr>
<td>Enzymatiques</td>
<td>NADH -cytochrome c réductase</td>
<td>1.8.2.3</td>
<td>Myocardio de porc</td>
</tr>
<tr>
<td></td>
<td>Lactate déshydrogénase</td>
<td>1.1.2.3</td>
<td>Lait de vache</td>
</tr>
<tr>
<td></td>
<td>Peroxidase</td>
<td>1.11.1.7</td>
<td>Leucocytes humains</td>
</tr>
<tr>
<td>Non</td>
<td>Ferritine</td>
<td></td>
<td>Foie de cheval</td>
</tr>
<tr>
<td>Enzymatiques</td>
<td>Hémoglobine</td>
<td></td>
<td>Erythrocytes de cheval</td>
</tr>
<tr>
<td></td>
<td>Myoglobin</td>
<td></td>
<td>Myocardio de porc</td>
</tr>
<tr>
<td></td>
<td>Cytochrome c</td>
<td></td>
<td>Myocardio de bovin</td>
</tr>
<tr>
<td>Cupro-protéines</td>
<td>L-Ascorbate oxydase</td>
<td>1.10.3.3</td>
<td>Cucumis sativus</td>
</tr>
<tr>
<td>enzymatiques</td>
<td>Betyroly-CoA déshydrogénase</td>
<td>1.3.99.2</td>
<td>Mitochondries de foie de bœuf</td>
</tr>
<tr>
<td></td>
<td>Phosphate oxydase (laccase)</td>
<td>1.10.3.2</td>
<td>Rhus vernicifera</td>
</tr>
<tr>
<td></td>
<td>Cytochrome oxydase</td>
<td>1.9.3.1</td>
<td>Foie de porc</td>
</tr>
<tr>
<td></td>
<td>Urale oxydase (uricase)</td>
<td>1.7.3.3</td>
<td>Erythrocytes de bœuf</td>
</tr>
<tr>
<td>Non enzymatiques</td>
<td>Hémocouprène</td>
<td></td>
<td>Foie de bœuf</td>
</tr>
<tr>
<td></td>
<td>Hépatoceprine</td>
<td></td>
<td>Foie de cheval</td>
</tr>
<tr>
<td></td>
<td>Hépatoceproptéine</td>
<td></td>
<td>Sérum humain</td>
</tr>
<tr>
<td>Zinco-Protéines</td>
<td>Anhydrase carbonique</td>
<td>4.2.1.1</td>
<td>Erythrocytes de bœuf</td>
</tr>
<tr>
<td>Enzymatiques</td>
<td>Carboxypeptidase A</td>
<td>3.4.2.1</td>
<td>Pancréas de bœuf</td>
</tr>
<tr>
<td></td>
<td>Alcool déshydrogénase</td>
<td>1.1.1.1</td>
<td>Lévure</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Non enzymatiques</td>
<td>Zincoprotéine</td>
<td></td>
<td>Leucocytes humains</td>
</tr>
<tr>
<td>protéines</td>
<td>Arginine kinase</td>
<td>2.7.3.3</td>
<td>Muscle d'écervisse</td>
</tr>
<tr>
<td>Ferro-</td>
<td>Aldéhyde oxydase</td>
<td>1.2.3.1</td>
<td>Foie de porc</td>
</tr>
<tr>
<td>manganèse</td>
<td>Enzymatiques (flavohémoprotéines)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>protéines</td>
<td>Xanthine oxydase</td>
<td>1.2.3.2</td>
<td>Lait de vache</td>
</tr>
</tbody>
</table>

phénomènes du même type dans le cœur et le cerveau qui sont particulièrement sensibles à ce qu'il est convenu d'appeler le stress « oxygène » ou stress oxydatif en raison de l'importance des phénomènes redox comme régulateurs de la structure fonctionnelle des récepteurs d'une part et du coefficient respiratoire de ces tissus d'autre part (tableau II).

Il importe de noter le rôle essentiel que peuvent jouer les enzymes dans ces phénomènes d'adaptation, en raison même du couplage de la molécule vectrice avec les ions inducteurs et les cofacteurs nucléotidiques, pyridiniques ou flavoniques.

Il reste que le système redox essentiel de la cellule comme des liquides extracellulaires est représenté par l’oxygène et sa forme fermentaire réduite, l’eau. Accompagnant l’activité de ce système simultanément au concassage catabolique, le stock enzymatique va jouer le rôle prépondérant du régulateur susceptible de régler la distribution électronique et le charge électrique aux différents paliers du processus.

L’eau intra- et extra-cellulaire devient un vecteur et un milieu d’échange entre substrats et métabolites, inducteurs et déchets, oxydants et réducteurs.

Signalons à cet égard le rôle principal du couplage du système glutathion réduit/glutation oxydé avec les enzymes de transfert d’hydrogène qui a la pénétrable charge de maintenir les protéines dans leur état fonctionnel en protégeant le couple SS/SH des agressions oxydantes ou réductrices (fig. 2).

L’expression redox du systèmes GSH/GSSG est donnée par l’équation de Nernst pour une valeur de — 252 mV. Ce qui induit à penser que ce système est en équilibre avec tous les autres systèmes redox tissulaires, mais surtout que le potentiel redox local règle toute l’activité enzymatique.

Il résulte de tout ceci que la vocation du processus normal de respiration tissulaire repose soit sur une rupture d’appro-

TABLEAU II. — Le phénomène du stress oxydatif comme exemple de perturbation d’adaptation. Parmi tous les accidents ou situations de perturbation du déroulement ordonné du phénomène de la régulation cellulaire, l’oxygène représente l’un des facteurs les plus fréquents et les plus agressifs. On ne peut mieux l’évoquer que sous le terme générique de « stress oxydatif » ou « oxydatif ou oxygène ». Mais son déclenchement comme ses effets résultent essentiellement de l’insuffisance fonctionnelle du système de défense dont dispose l’homme, dès lors que l’oxygène moléculaire est abandonné à lui-même, sans régulation ni contrôle. Ce système de défense est assuré tout particulièrement par des structures enzymatiques tout à fait spéciﬁques.

Oxygène :
1) La plus toxique des éléments biologiques
2) Nécessaire pour évacuation des protons (H⁺) et stockage d’énergie suivant rapport P/O = 3 (3 ATP pour 1/2 O₂)
3) Systèmes de protection naturels d’oscillation harmonisateurs :
 — tampons (plasma et GR via A.C.)
 — gradients de pressions et seuils de saturation Hb,
 — SaS de solubilité des gaz et P particules.

OXYGÈNE :

1) La plus toxique des éléments biologiques
2) Nécessaire pour évacuation des protons (H⁺) et stockage d’énergie suivant rapport P/O = 3 (3 ATP pour 1/2 O₂)
3) Systèmes de protection naturels d’oscillation harmonisateurs :
 — tampons (plasma et GR via A.C.)
 — gradients de pressions et seuils de saturation Hb,
 — SaS de solubilité des gaz et P particules.

STRESS :

Découpage par excès Oxyl. — P < 1 ≤ 3 O
Principe :
Découpage par excès phospho. — P > 3 O
Besoins :
OX acc ATP
FREIN

Rupture d'équilibre oscillant entre systèmes de protection
Entraine : inadaptabilité des régulateurs (Cu²⁺ ; ions ; centres Dienc.) blocage navette Redox (GR et membrane) adaptation protectrice tissulaire
NV : WD ; NC... rythmes - récepteurs parois vasculaires parois cellulaires et cytopl. (ondes de) échanges ioniques (K ; Ca)

Presse thermale et climatique, 1988, 125, n° 5.
TABLEAU III. — Hyperoxie - Hypoxie.

<table>
<thead>
<tr>
<th>Hyperoxie</th>
<th>Hypoxie</th>
</tr>
</thead>
<tbody>
<tr>
<td>Effet paradoxal</td>
<td>Hyperventilation</td>
</tr>
<tr>
<td>Déspression ventilatoire</td>
<td>Shunts respiratoires</td>
</tr>
<tr>
<td>Hypercapnie</td>
<td>Hypocapnie</td>
</tr>
<tr>
<td>Acidose</td>
<td>Alcalose puis acideose</td>
</tr>
<tr>
<td>Globule rouge</td>
<td></td>
</tr>
<tr>
<td>SaO₂ maxima</td>
<td>SaO₂ réduite</td>
</tr>
<tr>
<td>Courbe désaturation à gauche</td>
<td>Glissement courbe désat. à droite</td>
</tr>
<tr>
<td>Bloque tamponage Hb</td>
<td>Diminution capacité Hb</td>
</tr>
<tr>
<td>Excès glut. oxyde</td>
<td>Inhibition enzymes</td>
</tr>
<tr>
<td>Déstabilisation liaison</td>
<td>(AC) - (Lissons-tampons)</td>
</tr>
<tr>
<td>Hb - 2.3.DPG</td>
<td>Accumulation 2.3.DPG</td>
</tr>
<tr>
<td>Cellules</td>
<td></td>
</tr>
<tr>
<td>Viscitation de l’oxygène</td>
<td>Anoxie hypoxique (et hypobare)</td>
</tr>
<tr>
<td>Anoxie hypoxique</td>
<td>Sidération membrane</td>
</tr>
<tr>
<td>Sidération membrane</td>
<td>Oxygène singulet</td>
</tr>
<tr>
<td>et échanges ioniques (Ca⁺)</td>
<td>Radicaux libres</td>
</tr>
<tr>
<td>Décharges de radicaux libres</td>
<td>Dépétion ATP</td>
</tr>
<tr>
<td>Tissus</td>
<td></td>
</tr>
<tr>
<td>Lipoxydation</td>
<td>Lipoxydation</td>
</tr>
<tr>
<td>Altération membranaire</td>
<td>Désénoxydation</td>
</tr>
<tr>
<td>Désynchronisation fonctionnelle</td>
<td>Edème - hémocoagulation</td>
</tr>
<tr>
<td>Ischémie</td>
<td>(Hyperoxie - Athérose - Ischémie)</td>
</tr>
<tr>
<td>Crampes</td>
<td>Chute du flux sanguin</td>
</tr>
<tr>
<td>Tétanisation</td>
<td>Chute du flux coronaire</td>
</tr>
<tr>
<td>Arthrose - Hypertension</td>
<td>Chute de flux sanguin cérébral</td>
</tr>
<tr>
<td>Angor</td>
<td>Accroissement résistances vasc.</td>
</tr>
<tr>
<td>- Peur - - Vitesse</td>
<td>(Carreau)</td>
</tr>
<tr>
<td>Synd. Paul Bert</td>
<td>Fatigue</td>
</tr>
<tr>
<td>Synd. Lorrain-Schmith</td>
<td>Confusion</td>
</tr>
</tbody>
</table>

Fig. 2. — Dispositif anti-oxygène.

Fig. 3. — Hypoxie → radicaux libres → Ischémie.

La pressurisation ou utilisation de l’oxygène, soit sur une surcharge en éléments réducteurs, essentiellement les protéines ou leurs dérivées fermentaires.

L’oscillation de base étant désynchronisée, il en résultera en chaîne une multitude de désordres dans tout l’organisme. Les membranes lysosomiales deviendront plus perméables en fonction de l’accroissement des écarts aux valeurs normales du redox limitant même la nécessaire reversibilité des phénomènes, ce qui conduit aux chocs aussi bien qu’aux pathologies dégénératives. Ainsi, Puppi est amené à concevoir l’état Redox comme un système régulateur de réactions individuelles, mais aussi comme un potentiel résultant et déterminant pour le milieu intérieur. Le tableau III évoque les dommages et le retentissement des processus de vicissitudes du mécanisme respiratoire de base et de l’oscillation du potentiel Redox dans la cellule dans les cas d’oxydose et de réductose induites.

Ils nous permettent d’aborder mieux le mode de perturbation et d’interférence le plus fréquent qui puisse intervenir sur l’état Redox et déclencher l’enchaine des troubles dont surgira la maladie à partir de l’émission de radicaux libres d’origine métabolique et surtout à partir de l’état d’hypoxie (fig. 3).

HYPOXIE ET POTENTIEL REDOX

L’apparition d’un complexe fonctionnel évolutif de caractère hypoxique dans la cellule constitue le premier acte de l’organisation et du développement de toute pathologie. Se constitue alors le cadre indispensable aux modifications des réactions biochimiques normales qui conduiront à la polarisation cellulaire par rupture du rythme oscillant de l’état Redox et la réduction du stock d’énergie disponible.

Mais il faut bien garder à l’esprit que l’évolution intracellulaire est nécessairement liée aux modifications pouvant apparaître dans le milieu intérieur et par conséquent à l’état fonctionnel de la membrane.
Hochachka montrait récemment que l'inversion de l'effet Pasteur Meyerhof déterminait le découplage des fonctions métaboliques mitochondriales et des fonctions membranaires par dysperméabilité ionique et acide tissulaire. L'hypoxie tend naturellement à accroître le stock de protons et à favoriser les fermentations résiduelles au détriment de la synthèse protéique. Cette réduction peut atteindre très vite 50 p. cent.

Ainsi, la multiplication des fibroblastes se trouve bloquée, tandis que la libération de défense de noradrénaline provoque une consommation accrue de groupements SH en raison de l'augmentation de la lipolyse des trigycérides.

L'oxydation de ces groupes SH est encore aggravée par le ralentissement fonctionnel de la voie des pentoses et par conséquent de la moindre production de NADPH.

La baisse de disponibilité en oxygène par rapport aux besoins va de son côté induire un large complexe d'adaptation qui sera opératoire, aussi bien au niveau des récepteurs périphériques que du fonctionnement des systèmes secrétaires.

Ainsi, le nombre et l'affinité des récepteurs adrénergiques varient considérablement et l'on observe la multiplication des récepteurs bêta dans les poumons avec changement des proportions respectives des sous-types β1 et β2. Dans le même temps, l'hémoglobine fonctionnelle varie qualitativement.

La sous-oxygénation tissulaire, l'acidose cellulaire et l'accumulation fermentaire vont se traduire par des variations importantes des concentrations des composés réduits ou oxydés dans la cellule.

Un processus de chélation se développe alors de proche en proche qui induit un phénomène polyenzymopénique par améthyllose cationique. Le déficit fonctionnel des cations constitue davantage une privation d'action cationique qu'une réduction quantitative, mais, les radicaux de chélation nés du métabolisme vicié comme des molécules étrangères sont à même de se juxtaposer les inducteurs enzymatiques indispensables que le milieu intérieur délivre aux cellules.

La perturbation des flux métaboliques qui en résulte, constitue le substratum de la pathologie dégénérative à travers une déchânche fonctionnelle des ressources enzymatiques cellulaires, puisque trente pour cent des enzymes actives à ce niveau sont reconnues être métallo dépendantes.

De son côté, la réduction monovalente de l'oxygène conduit à des intermédiaires oxygénés hautement réactifs, tels que le superoxyde (O2-), le peroxoxyde d'hydrogène (H2O2), le radical hydroxyl (OH-) ou l'oxygène singulet (1 O2).

Ces intermédiaires seront responsables, dès leur diffusion, aussi bien de la peroxydation lipique, de l'ischémie cellulaire que des cassures et des mutations pouvant atteindre l'ADN.

Malgré les lignes de défense que l'organisme peut opposer à ce phénomène, ses capacités d'épuration sont rapidement débordées en situation d'hypoxie chronique si ne réussit à s'imposer une adaptation progressive au phénomène.

Fig. 4. — Échanges gazeux au niveau des tissus.

L’ADAPTATION À L’HYPOXIE

Or la correction de ses effets néfastes, reposera sur des mécanismes biochimiques, tels que l'accroissement de concentration de composés SH dans la matrice mitochondriale, susceptibles de développer une augmentation de l'activité antioxydante, en favorisant la suractivité des enzymes inhibiteurs de la peroxydation lipidique ou en accentuant le métabolisme du glutathion, aiguilleur des gradients redox cellulaires.

Parmi les actions biochimiques importantes, les prostaglandines paraissent jouer un rôle déterminant dans la défense cellulaire antihypoxique comme PGJ2 ; PGE, accroît quant à elle, la synthèse érythropoïétique simultanément à la stimulation de l’adénylycylase.

Mais la thérapeutique du trouble dysfonctionnel reposera surtout sur la mise en jeu des mécanismes de régulation du milieu intérieur, comme de la cellule par le double effet de la respiration et de la diurèse sous l'impulsion du système neuro-végétatif et hypothalamo-surrénalien.

Il convient alors que les cellules puissent reconstituer leur stock d'enzymes fonctionnelles.

Cette reconstitution repose d'une part sur la déséqustration des cations-résidents, sur la réactivation des complexes enzyme-métal et substrat-métal, et la levée de l'inhibition réactionnelle (fig. 4).

Dans cette entreprise, le stade sanguin et globulaire est aussi important que la relance de la chaîne respiratoire cellulaire. De ces deux mécanismes, résulte l'oscillation rythmique des échanges entre sang et cellules et du tamponnement de ces échanges. Il n'est pas vain de situer le début et la fin de ces perturbations dans l'hématie où l'anhydrase carbbonique, enzyme à zinc, permet aux quatre couples tampons hémolacobiniques d'engranger ou d'évacuer l'oxygène en fortifiant cette fonction par le jeu du 2-3 DPG grâce au métabolisme énergétique du globule rouge (fig. 5).

INTERET DE LA CRENOTHERAPIE DANS LA REACTIVATION CELULLAIRE

L'eau est sans contexte le constituant essentiel de l'organisme. Substratum du milieu interieur, elle l'assure et le maintient pour que les cellules y vivent.
Cannon en 1946, après Claude Bernard, confirmait la stabilité du milieu intérieur « qui permet d’assurer l’unité de nature des phénomènes physiologiques et pathologiques dans la variété infinie de leurs manifestations spéciales ».

La crénothérapie peut donc être inscrite dans l’arsenal thérapeutique, comme l’un des moyens les plus sûrs pour rétablir ou sauvegarder l’hémostasie et l’équilibre dynamique de l’état Redox, qui règle notre vie physiologique.

Cette aptitude à s’attaquer aux causes profondes des pathologies n’exclut pas pour autant qu’elle puisse répondre à l’organe qui souffre en résorbant le symptôme.

Il y a lieu d’y voir une méthode thérapeutique complète susceptible d’agir aussi bien sur la cause que sur l’effet.

PREVENTION ET THERAPIE — INTERET

Cet ensemble de disponibilités ioniques prend soudain un intérêt grandissant, de caractère aussi bien préventif que curatif. Nous avons parcouru les mécanismes de destabilisation de l’état Redox au regard de l’installation d’une situation dysrythmique, l’hypoxie.

Il s’avère que la bonne régulation de cet état requiert un stock enzymatique fonctionnel en parfaite lubrification. Au niveau de l’hématie, l’anhérobé carbonique est aussi indispensable, grâce à son zinc, au jeu fonctionnel que la glutathion réductase ne l’est à l’état métabolique et physico-chimique de l’hémoglobine. Or, le couple glutathion oxydé - glutathion réduit, dépend de la capacité de production en NADPH, c’est-à-dire de l’oscillation régulière de la glycolyse et de la voie des pentoses régulée par le 2-3 DPG (fig. 6).

Ce simple petit ensemble requiert à lui seul quelques dizaines d’enzymes et autant de cofacteurs et d’inducteurs parmi lesquels nous retrouvons le Fe, le Mg, le Zn, le Mn.
TABLEAU IV. — Les flavo-métallo-enzymes.

<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td>Mol. protéine</td>
<td>/Mol. protéine</td>
<td></td>
</tr>
<tr>
<td>Oxydases</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1.2.3.1</td>
<td>Aldéhyde oxydase</td>
<td>Foie de porc</td>
<td>2 Mo</td>
<td>2 FAD</td>
<td>1/1</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Lait</td>
<td>2 Mo</td>
<td>2 FAD</td>
<td>1/2</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>8 Mo</td>
<td>2 FAD</td>
<td>4</td>
</tr>
<tr>
<td>1.2.3.2</td>
<td>Xanthine oxydase</td>
<td>Foie (vosalife)</td>
<td>1 Mo</td>
<td>1 FAD</td>
<td>1/8</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>8 Fe</td>
<td>1 FAD</td>
<td>1/8</td>
</tr>
<tr>
<td>1.3.3.1</td>
<td>Dihydro orotate déshydrogénase</td>
<td>Z. oroticum</td>
<td>4 Fe</td>
<td>1 FAD + 1 FMN</td>
<td>1</td>
</tr>
<tr>
<td>Déshydrogénases</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1.1.2.3</td>
<td>L-Lactate déshydrogénase</td>
<td>Levure</td>
<td>1 Fe (H.)</td>
<td>2 FMN</td>
<td>1/2</td>
</tr>
<tr>
<td>1.2.4</td>
<td>D-Lactate déshydrogénase</td>
<td>Levure</td>
<td>2 Zn</td>
<td>1 FAD</td>
<td>2</td>
</tr>
<tr>
<td>1.2.1.3</td>
<td>Aldéhyde-déshydrogénase</td>
<td>Foie</td>
<td>1 Mo</td>
<td>2 FAD</td>
<td>1/2</td>
</tr>
<tr>
<td>1.2.2.2</td>
<td>Acyl CoA déshydrogénase</td>
<td>Tissus animaux</td>
<td>1 Fe</td>
<td>1 FAD</td>
<td>1</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Myocarde</td>
<td>1 FAD</td>
<td>4</td>
</tr>
<tr>
<td>1.3.99.1</td>
<td>Succinate déshydrogénase</td>
<td>Levure</td>
<td>4 Fe</td>
<td>1 FAD</td>
<td>4</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>M. Lactilyticus</td>
<td>40 Fe</td>
<td>40</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>NAD(P) H+ Déshydrogénases</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1.6.2.1</td>
<td>NADH: Cytochrome c réductase</td>
<td>Myocarde (porc)</td>
<td>4 Fe</td>
<td>1 FAD</td>
<td>4</td>
</tr>
<tr>
<td>1.6.2.2</td>
<td>NADH: Cytochrome b réductase</td>
<td>Mitochondries (foie)</td>
<td>2 Fe</td>
<td>1 FAD</td>
<td>2</td>
</tr>
<tr>
<td>1.6.5.3</td>
<td>Ubiquinone réductase</td>
<td>Fa</td>
<td>1 FAD</td>
<td></td>
<td></td>
</tr>
<tr>
<td>1.6.6.1</td>
<td>NADH: nitrate réductase</td>
<td>E. Co.I</td>
<td>FAD, FMN</td>
<td></td>
<td></td>
</tr>
<tr>
<td>1.6.6.3</td>
<td>NADH: nitrate réductase</td>
<td>Neurospora crassa</td>
<td>1 FAD</td>
<td></td>
<td></td>
</tr>
<tr>
<td>1.6.6.4</td>
<td>Nitrate réductase</td>
<td>Végétale</td>
<td></td>
<td>FAD, FMN</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>FAD, FMN</td>
<td></td>
</tr>
<tr>
<td>1.7.99.1</td>
<td>Hydroxyamine réductase</td>
<td>N. crassa</td>
<td>Mn</td>
<td>FAD</td>
<td>?</td>
</tr>
<tr>
<td>1.7.99.2</td>
<td>Oxide nitrique réductase</td>
<td>P. stutzeri</td>
<td>Fe, Cu</td>
<td>FAD, FMN</td>
<td>?</td>
</tr>
<tr>
<td>1.7.99.3</td>
<td>Hydroxyamine-cytochrome c-réductase</td>
<td>N. europasa</td>
<td>Cu</td>
<td>FAD</td>
<td>?</td>
</tr>
<tr>
<td>1.98.1.1</td>
<td>Hydrogénase</td>
<td>M. lactilyticus</td>
<td>Fe, Mo</td>
<td>FAD</td>
<td>?</td>
</tr>
</tbody>
</table>

Fig. 6. — Navette Redox du GR.

Tout simplement, parce que l’oxygène, élément hyper-toxique, doit être canalisé et contrôlé au plus près jusqu’à sa réduction finale en eau, en même temps qu’il est indispensable à l’accumulation d’énergie à l’occasion de cette réduction.

Sans cette organisation globulaire, l’héméostasie plasmatique serait impossible, comme serait impossible l’oscillation productrice d’énergie du Redox cellulaire, sans la chaîne de transport d’oxygène et d’électrons, sans les enzymes d’activation de l’oxygène où l’on heurte à chaque seuil non seulement les vitamines du groupe B cofactorielles, mais le Fe, le Cu, le Zn, le Mn, le Mg comme inducteurs d’activité.

Nous avons montré par ailleurs les propriétés antihypoxi-ques spécifiques portées par une eau minérale, l’eau de la Bourboule, dont les effets s’observent et se mesurent sur l’ATP, le 2-3 DPG, les enzymes anti-oxydantes, les chilinestérases et l’histamine. Il serait à notre sens simplificate et inexact de vouloir lier ces propriétés à un seul élément, mais de les rapporter plutôt à un ensemble d’effets synergiques, consécutifs à la présence de cations essentiels groupés autour de l’arsenic…

Un mécanisme d’induction et d’interférence proportionnel et progressif sera peut-être mis en évidence pour expliquer ce qui n’est encore qu’une donnée d’expérience.
CONCLUSION

En 1943 : Leriche écrivait que « la pathologie est un amplificateur puissant des phénomènes naturels inaperçus sans elle ».

Ainsi, à une époque où la dysrhumie de l'existence et de la société moderne induit et ordonne la plupart des différents états de dysfonctionnement organique et psycho-somatique, qui installent les hommes dans une situation de rupture à l'égard de la santé, il importe de se souvenir que la correction des troubles dysrégulateurs impose une succession coordonnée de thérapeutiques à visée préventive, tant que le stade lésionnel n'apparaît qu'en perspective.

Il faut alors savoir se garder des traitements intempestifs et de l'usage abusif de médicaments trop largement et trop lourdement utilisés pour des motifs mineurs.

Le développement des pathologies à partir de santés rompues et à travers des états complexes de dérégulation progressive suppose que le recours aux facteurs de réactivation et de régulation ne semble pas seulement nécessaire, mais indispensable.

Eux seuls pourront peut-être empêcher tel organisme ou tél tissu de connaître l'irréversibilité d'un trouble grave, résultant d'une enzymopénie améthotrope par séquestration ou carence... Les sources en sont diverses... Mais la crémaphérèse présente l'insigne avantage d'offrir au malade ce qui lui manque, ou le dont il a besoin, en même temps qu'un moyen de se rétablir et de se prémunir à la fois. Thérapeutique à part entière, l'eau apparaît ainsi comme l'un des moyens privilégiés d'assurer l'équilibre énergétique au plus près des nécessités de la vie, parce qu'elle est un des meilleurs systèmes de maintenance de notre stock enzymatique.

Allocation de Monsieur André Rossinot
Ministre, Maire de Nancy

Monsieur le Ministre,
Monsieur le Président,
Messieurs les Recteurs,
Mesdames et Messieurs,

Les travaux du 30e Congrès International d'Hydrologie Médicale et de Climatologie s'achèvent.

Permettez-moi tout d'abord de vous remercier d'avoir choisi notre région et particulièrement Vittel et Nancy pour vous réunir cette année.

Vittel et Nancy : deux villes où le domaine de l'eau est particulièrement bien connu, Vittel pour son prestigieux vécu thermal, Nancy par l'importance et la qualité des études qui y sont menées.

Permettez-moi également de remercier Monsieur le Professeur Boulanger, Président du Haut Comité du Théramisme et du Climatisme, maître d'œuvre de cet congrès.

Je suis pour l'heure toute la compétence et le dévouement qu'il met à servir le thermalisme en France.

Nancy est une ville universitaire, dynamique : 30 000 étudiants, 300 laboratoires, 3 000 chercheurs. Les travaux concernant l'eau y sont particulièrement poussés : la Faculté de Médecine qui, avec celle de Paris, est la seule de la moitié nord de la France à proposer une spécialisation en thermalisme, le Centre des Sciences de l'Environnement, l'Institut de Recherche Hydrologique, les laboratoires d'hydraulique des sols de l'Ecole de Géologie, le département de microbiologie de la Faculté de Pharmacie sont autant de structures travaillant dans le domaine de l'eau.

Cette prééminence a été reconnue en 1984 par la Fédération mondiale des villes jumelées-citées unies, qui a désigné notre ville comme siège de l'Agence des Cités Unies pour la maîtrise de l'eau...

En quelques années, le Centre International de l'Eau, Nancien, a pris un développement considérable, participant au développement des colloques internationaux, des missions d'études sur le terrain...

Ainsi, vous le constatez, vos travaux se déroulent dans un cadre privilégié.

J'ai parcouru avec un intérêt tout particulier la totalité des conférences qui ont été menées au cours de ces quatre journées d'études. Là encore, j'ai pu constater combien les thèmes abordés étaient présents dans les préoccupations des médecins de notre cité.

Permettez-moi de prendre simplement deux exemples : les techniques oto-rhino-laryngologiques et l'hygiène.

L'Ecole ORL de Nancy est célèbre de par la grande qualité de ses travaux. Ses promoteurs, les Professeurs Jacques, Grumault, Aubriot, et leurs successeurs, Messieurs les Professeurs Wayoff, Perrin, méritent de notre part le plus grand respect pour les recherches qu'ils ont menées et qu'ils mènent.

Grâce au doyen Parisot, l'hygiène est devenue une très forte tradition dans l'Ecole de Médecine de Nancy.

Ces quelques grands médecins, parmi tant d'autres, ont œuvré pour la grande renommée des Universités de Médecine de Nancy, qu'ils en soient remerciés.

Vous avez pu visiter le site de Nancy-Thermal. En effet, notre ville possède également une source forée au début de ce siècle. Les bâtiments que vous avez découverts vous laissant deviner quelles ont été les ambitions mises dans cette exploitation de thermalisme naissant : malheureusement, la guerre de 1914 a mis fin à ces espoirs.

Aujourd'hui, nous avons l'intention de reprendre ce
dossier : Nancy a l’ambition de devenir une capitale de l’eau. Le thermalisme ne doit pas y en être absent.

Le thermalisme en France est actif, quelques chiffres le démontrent :
— 620 000 curistes en 1985,
— 60 000 employés,
— 145 établissements thermaux,
— 100 stations hydrominérales.

L’Etat a conscience du rôle et de l’aide qu’il peut accorder à ce secteur d’activité. Certaines aides sont automatiques, telle que l’augmentation de 15 p. cent de la dotation globale de fonctionnement. Mais il nous faut regarder la situation du thermalisme dans son ensemble, face à son avenir.

Depuis quelques années (1982), le thermalisme connaît un nombre croissant de curistes. Cette augmentation peut s’expliquer bien entendu par des raisons techniques, telle que la prise en charge par la Sécurité Sociale, mais également par des raisons sociologiques.

La démarche du thermalisme, tout en demeurant curative, devient de plus en plus préventive. C’est une certaine idée de promotion de la santé qui se développe : c’est une médecine active, les curistes se prennent en charge, d’où l’importance de plus en plus grande du sport dans bon nombre de stations.

Nous savons tous, et vous l’avez une nouvelle fois démontré au cours de ce congrès, que le thermalisme joue un rôle important dans les soins apportés aux malades. Son efficacité n’est plus à démontrer : elle est prouvée.

Désormais, attachons-nous à une nouvelle promotion de ce secteur de notre activité économique. C’est vers ce but que tend le Gouvernement ainsi que toute la profession.

250 congressistes venus du monde entier, voilà une fantastique occasion de confronter les expériences, les résultats obtenus.

Je suis persuadé que vos travaux joueront un rôle important dans l’amélioration des soins apportés, je pense par exemple à l’apport de techniques modernes, telle que l’informatique, mais aussi dans la prise en compte de la qualité de la vie apportée aux curistes.

Une nouvelle fois, permettez-moi de vous adresser mes remerciements ainsi que ceux de mes concitoyens d’avoir choisi notre ville et la Lorraine pour votre congrès et j’espère qu’en dépit de votre programme très chargé, vous aurez eu l’occasion de pouvoir visiter notre région et qu’elle aura su vous plaire.

Allocation de Monsieur Adrien Zeller

Secrétaire d’État

Monsieur le Maire,
Monsieur le Président, Mon Cher Collègue,
Monsieur le Recteur Magnin, que je suis heureux de retrouver,
Mesdames,
Messieurs,

Les journées du 30e Congrès International d’Hydrologie et de Climatologie Médicales s’achèvent aujourd’hui.

Je ne doute pas que les diverses communications qui se sont succédées ont témoigné une nouvelle fois de l’importance qu’a acquise votre discipline dans cette décennie.

Au nom du Gouvernement, je voudrais vous saluer tout spécialement et je ne voudrais pas manquer de saisir l’opportunité qui m’est offerte de rappeler la place du thermalisme en France, non seulement dans le domaine scientifique et sanitaire mais aussi dans le secteur de l’économie et de l’emploi.

Le thermalisme, c’est un chiffre d’affaires de 3 milliards de francs pour les stations thermales, et un chiffre sensiblement égal pour les eaux minérales.

C’est aussi, pour le seul régime général de la Sécurité Sociale, une dépense supérieure à 1 million de francs.

Mais c’est encore : plus de 600 000 curistes, une centaine de stations, 145 établissements thermaux, 500 médecins, une centaine de maisons d’enfants à caractère sanitaire...

C’est enfin, et ce n’est pas le moins important par les temps actuels, un secteur créateur d’emplois à différents niveaux : 60 000 emplois saisonniers ou permanents dans les établissements thermaux, certes, mais aussi bien d’autres encore dans les hôtels, les commerces, les transports.

Même si certains emplois sont de type temporaire ou saisonnier, il n’en demeure pas moins que le thermalisme contribue aussi à maintenir et à fixer une population peu qualifiée qui serait, sans ce support, obligée de quitter sa région d’origine pour trouver un emploi. Ceci est d’autant plus important que les thermes sont, dans notre pays,
généralement implantés dans des régions économiquement peu favorisées et, en tout cas, presque toujours peu industrialisées.

C'est ainsi que cette discipline est, sans nul doute, appelée à se développer à l'avenir, par tout le circuit économique d'accompagnement qu'elle crée autour d'elle, qu'il s'agisse d'activités touristiques ou commerciales les plus diverses.

En matière sanitaire et sociale, je voudrais rappeler l'importante enquête statistique lancée en 1983 entre la CNAOMTS et la Fédération Thermale et Climatique Française, qui a pour but d'apprécier les efforts de la cure thermale sur l'état de santé des bénéficiaires à travers l'évolution de la consommation de soins et des arrêts de travail donnant lieu à indemnisation.

La thérapeutique thermale peut, en effet, pour les affections chroniques, constituer un élément de choix dans l'arsenal des traitements aujourd'hui possibles, et il est important que la Sécurité Sociale puisse apprécier l'impact de cette thérapeutique sur les malades.

Les infiltrations et les orientations, en ce domaine, de la politique publique suivie, les mesures qui en découlement, ont une traduction directe sur les cures thermales. Vous le savez, la procédure d'entente préalable a été considérablement assouplie à la suite d'une des propositions du rapport Ebrard. Et, depuis lors, c'est-à-dire depuis 1981, la croissance du poste « cures thermales » a atteint 67,6 p. cent en 3 ans, ce qui est considérable. Certes, il serait erroné de considérer que seul ce facteur a joué : une meilleure information des malades, la reconnaissance par l'Organisation Mondiale de la Santé de votre spécialité, la revalorisation des tarifs des traitements thermaux ont eu leur part de cet accroissement. De même, il faut regretter la disparition, depuis plus de quinze ans, de l'enseignement systématique de cette possibilité thérapeutique dans les facultés de médecine, en France, qui ne permet pas toujours aux médecins prescripteurs de jouer un rôle actif dans le choix de telle ou telle station en fonction des propriétés de leurs eaux et de l'affection dont est atteint le patient. Et pour toutes ces cures s'ajoutent, pour une part importante, des causes structurelles dues essentiellement au système actuel de gestion administrative et tari- faire des établissements thermaux. Un rapport de l'Inspection Générale des Affaires Sociales en a d'ailleurs récemment analysé les causes et les effets.

Quoi qu'il en soit, il n'est pas interdit de penser que l'augmentation du nombre de curistes à laquelle nous avons assisté ces dernières années — de 1981 à 1984, elle a atteint 13,8 p. cent pour les assurés du régime général — témoigne de l'intérêt considérable qui s'attache aux progrès scientifiques de la crénothérapie dont votre Congrès s'est fait l'écho tout au long de cette semaine.

Et finalement, ici à Nancy, la présence dans cette salle de spécialistes de réputation internationale et représentant l'apport de nombreux pays à cette discipline, est le meilleur gage de son avenir, que je crois assuré par-delà tous les aléas.
Vos équipements d'hydrothérapie Thermales

Acquérir aujourd'hui l'équipement de demain, vous le pouvez avec DOYER. Grâce à 50 années d'expérience, un département recherche et développement, l'application de technologies avancées, DOYER est devenu leader sur le marché français.

Équipements ORL	Equipements RHUMATO	Equipements STOMATO
- générateurs d'aérosols (Brevet Gauchard),
- appareils insufflateurs tubo-tymaniques,
- appareils de humage et de pulvérisation,
- appareils de douche de gorge,
- appareils de douche nasale.
- baignoires professionnelles pour aérobains et douches sous-marines - baignoires de rééducation,
- appareil automatisé HYDROXEUR®,
- appareil de massage sous l'eau
- bains de bras, bains de pieds.
- équipements pour douche gingivale.

152, rue de Noisy le Sec
B.P. 77 - 93172 BAGNOLET CEDEX
Tél. : (1) 43 60 78 88 - Telex 212 294 F

NOM __________________________
SOCIETE __________________________ TEL __________
ADRESSE __________________________
__________________________ CODE POSTAL __________

Veuillez m'envoyer votre documentation sur les équipements :
☐ ORL ☐ RHUMATO ☐ STOMATO

BULLETIN D'ABONNEMENT
voir tarifs page 1

Réserve au service Abonnements
Code INSEE
Échéance
N° expédiés
N° enregistr. comptable

 Souscrito un abonnement d'un an (4 numéros) à LA PRESSE THERMALE ET CLIMATIQUE

Ci-joint un règlement de F

A l'ordre de : EXPANSION SCIENTIFIQUE FRANÇAISE
Chèque bancaire ☐ Chèque postal ☐

à retourner à EXPANSION SCIENTIFIQUE FRANÇAISE
Service Diffusion,
15, rue Saint-Benoît - 75278 PARIS CEDEX 06.

Signature : Date :
Rhumatismes
La réponse est à Vittel

Vous souffrez de rhumatismes ou de séquelles de traumatismes, la cure de Vittel peut vous aider à améliorer sensiblement votre état.

Dans un complexe thermal ultra-moderne, Vittel met à votre disposition ses tout nouveaux bassins de rééducation et ses 20 salles de massages (à sec ou sous l'eau).

L’hydrothérapie, les bains de boue et les massages donnent des résultats spectaculaires dans le traitement des rhumatismes. Ces soins sont donnés par un personnel extrêmement qualifié. Tous les kinésithérapeutes sont diplômés d'Etat.

Un environnement naturel exceptionnel (600 hectares d’espaces verts aménagés) et des installations sportives et de loisirs les plus variées font de Vittel un lieu idéal pour votre repos et la remise à neuf de votre organisme.

Vittel est ouvert toute l’année. Parlez-en à votre médecin.

Pour tous renseignements pratiques, téléphonez à Vittel au 29.08.00.00.